Exponentialekvationer: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 5: Rad 5:
Här undersöker vi xxx.  
Här undersöker vi xxx.  
}} |
}} |
| {{sway | [https xxx]}}<br />
| {{sway | [https://sway.com/2ZGAcOWgiXcAtEz8?ref=Link Exponentialekvationer]}}<br />
{{gleerups| [https://gleerupsportal.se/laromedel/exponent-2c/article/314bb117-05b1-4536-a41e-3ee15000f4d6 Exponentialekvationer] }}<br />
{{gleerups| [https://gleerupsportal.se/laromedel/exponent-2c/article/314bb117-05b1-4536-a41e-3ee15000f4d6 Exponentialekvationer] }}<br />
{{matteboken |[https://www.matteboken.se/lektioner/matte-2/logaritmer/tiologaritmer En bit ner på sidan behandlas exponentialekvationer] }}<br />
{{matteboken |[https://www.matteboken.se/lektioner/matte-2/logaritmer/tiologaritmer En bit ner på sidan behandlas exponentialekvationer] }}<br />

Versionen från 5 februari 2018 kl. 20.47

Mål för undervisningen xxx

Här undersöker vi xxx.

Swayen till detta avsnitt: {{{1}}}


läromedel: Exponentialekvationer



Teori

2.47 min.
Definition
[math]\displaystyle{ }[/math] är en xxx


Grafisk löning

Logaritmera ekvationer

Dessa och liknade ekvationer löser man genom att logaritmera båda sidorna.

Varför är det så?

Om 102a+3b = 10y så innebär det att 2a+3b = y

Om log(2a+3b) = log y så innebär det att 2a+3b = y

Om log 10x = log 27 så innebär det att 10x = 27

Om man går åt andra hållet kan man säga att om 10x = 27 så innebär det att log 10x = log 27

Nu har vi hittat en metod att lösa ekvationer med exponentialfunktioner. Den kallas att logaritmera.

Exempel

Lös ekvationen 102x = 200

Logaritmering av båda sidorna ger

log 102x = log 200

2x = log 200

x = log (200) /2

Aktivitet

Uppgift
xxx'



Lär mer

Exit ticket