Linjära och exponentiella modeller: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 1: Rad 1:


[[Image:LogLog exponentials.svg|thumb|A log–log plot of ''y''&nbsp;=&nbsp;''x''&nbsp;(blue), ''y''&nbsp;=&nbsp;''x''<sup>2</sup>&nbsp;(green), and ''y''&nbsp;=&nbsp;''x''<sup>3</sup>&nbsp;(red).<br>Note the logarithmic scale markings on each of the axes, and that the log&nbsp;''x'' and log&nbsp;''y'' axes (where the logarithms are 0) are where ''x'' and ''y'' themselves are 1.]]
In [[science]] and [[engineering]], a '''log–log graph''' or '''log–log plot''' is a two-dimensional graph of numerical data that uses [[logarithmic scale]]s on both the horizontal and vertical axes. [[Monomial]]s – relationships of the form <math>y=ax^k</math> – appear as straight lines in a log–log graph, with the power and constant term corresponding to slope and intercept of the line, and thus these graphs are very useful for recognizing these relationships and [[estimating parameters]]. Any base can be used for the logarithm, though most common are 10, [[e (mathematical constant)|e]], and 2.


I detta avsnitt ska vi öva oss på att skilja på den linjära modellen och den exponentiella.
I detta avsnitt ska vi öva oss på att skilja på den linjära modellen och den exponentiella.

Versionen från 15 januari 2018 kl. 21.55

A log–log plot of y = x (blue), y = x2 (green), and y = x3 (red).
Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1.

In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Monomials – relationships of the form [math]\displaystyle{ y=ax^k }[/math] – appear as straight lines in a log–log graph, with the power and constant term corresponding to slope and intercept of the line, and thus these graphs are very useful for recognizing these relationships and estimating parameters. Any base can be used for the logarithm, though most common are 10, e, and 2.

I detta avsnitt ska vi öva oss på att skilja på den linjära modellen och den exponentiella.

linjär: [math]\displaystyle{ y = k\cdot x + m }[/math]
exponentiell: [math]\displaystyle{ y = y_0\cdot a^x }[/math] där [math]\displaystyle{ y_0 }[/math] är samma sak som C i tidigare exempel)

Ibland tex inom fysiken vill man utgående från en del mätvärden hitta en modell. Om mätvärdena verkar bilda en exponentiell funktion brukar man ta logaritmen av y-värdena för att linearisera grafen.

Ofta används antingen naturliga logaritmen (ln=loge) med Nepers tal e=2.718281828459045... som bas eller logaritmen (log=log10) med 10 som bas.

lineariserad exponentiell: [math]\displaystyle{ log_{10}(y) = log_{10}(a) \cdot x + log_{10}(y_0) }[/math]

När man sedan hittat kurvan tex med lineär regression får man höja basen 10 i de funna värdena.