Begrepp inom algebran: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 109: Rad 109:
| <math>{(x^m)}^n = x^{m \cdot n}</math> || _______________________
| <math>{(x^m)}^n = x^{m \cdot n}</math> || _______________________
|-
|-
| <math>{(x \cdot 0)}^n = 1  || _______________________
| <math>x^0 = 1  || _______________________
|-
|-
| <math>{ \left( {x \over y }\right)^m} = {x^m \over y^m}</math> || _______________________
| <math>{ \left( {x \over y }\right)^m} = {x^m \over y^m}</math> || _______________________

Versionen från 5 september 2017 kl. 06.51

Mål för undervisningen Algebraiska uttryck

Vi går igenom alla regler som används inom aritmetiken och algebran. Du kommer att lära dig flera nya begrepp inom algebran. Du kommer att öva dig i att förenkla algebraiska uttryck med hjälp av reglerna.

Swayen till detta avsnitt: Begrepp inom algebra




Aktivitet

Algebraiska regler

Definition
Samma regler inom aritmetiken som i algebran
Kommutativa lagen.

Operatorn [math]\displaystyle{ \star }[/math] på en mängd [math]\displaystyle{ S }[/math] är kommutativ om och endast om det för alla element [math]\displaystyle{ x }[/math] och : [math]\displaystyle{ y }[/math] i [math]\displaystyle{ S }[/math] gäller att

[math]\displaystyle{ x \star y = y \star x }[/math].
Associativa lagen.

En binär operator * på en mängd S kallas associativ om det för alla x, y och z i S gäller att

(x * y) * z = x * (y * z).

Om så är fallet kan man använda beteckningen x * y * z, eftersom det inte spelar någon roll i vilken ordning operationerna utförs.

Distributiva lagen.

En operator, [math]\displaystyle{ \,* }[/math], sägs vara distributiv med avseende på en annan operator, +, om det för alla x, y och z i en mängd S gäller att

[math]\displaystyle{ \, x * (y + z) = (x * y) + (x * z) }[/math]
och
[math]\displaystyle{ \, (y + z) * x = (y * x) + (z * x) }[/math]
Potenslagarna

Ur definitionen av potenser med positiva tal som heltalsexponent, kan potenslagarna härledas:

  • [math]\displaystyle{ {(x \cdot y)}^n = x^n \cdot y^n }[/math]
  • [math]\displaystyle{ { \left( {x \over y }\right)^m} = {x^m \over y^m} }[/math]
  • [math]\displaystyle{ x^m \cdot x^n = x^{m+n} }[/math]
  • [math]\displaystyle{ {x^m \over x^n} = x^{m-n}, (x \ne 0) }[/math]
  • [math]\displaystyle{ {(x^m)}^n = x^{m \cdot n} }[/math]

Utgående från dessa lagar definieras sedan utvidgade betydelser av potens.



Algebraiska begrepp

Uppgift
Googla något av begreppen i listan och lär dig mer.

Om du hittar något begrepp som inte finns på listan så loggar du in på wikiskola och skriver dit det i listan tillsammans med en förklaring.


Lär dig dessa begrepp och matematikord

Ord Betydelse
bestäm Räkna ut värdet av
beräkna Räkna ut värdet av
ekvation två uttryck med ett likhetstecken mellan
faktoriseera dela upp i faktorer, oftast primtalsfaktorer
flytta över förändra en formel eller ett uttryck genom att utföra samma operation på båda sidor om likhetstecknet
formel en ensam variabel i vänster led och ett uttryck i höger led
funktion ett samband mellan två eller flera variabler, ex [math]\displaystyle{ y = 3 x - 2 }[/math]
förenkla minska komplexiteten i ett uttryck genom att slå ihop termer, förkorta, mm
förkorta plocka bort lika dana faktorer på varsin sida av ett bråkstreck eller likhetstecken
höger led termerna till höger om likhetstecknet i en ekvation
konstant en bokstav betecknar ett tal som inte varierar, exempelvis [math]\displaystyle{ \pi }[/math]
lös ut se till att en variabel hamnar ensam till vänster i en ekvation
operator tecken som visar vilket räknesätt som ska användas, exempelvis [math]\displaystyle{ +, -, *, / }[/math]
uttryck en kombination av tal, variabler och operatorer
variabel en bokstav som i ett uttryck, formel eller ekvation betecknar ett värde som kan variera
vänster led termerna till vänster om likhetstecknet i en ekvation
värdet av att sätta in siffror i ett uttryck och räkna ut vad det är

Finn regeln

Kopiera texten till din dator och skriv rätt regel på strecket.

Förenkling Skriv regeln
[math]\displaystyle{ {(x^m)}^n = x^{m \cdot n} }[/math] _______________________
[math]\displaystyle{ x^0 = 1 || _______________________ |- | \lt math\gt { \left( {x \over y }\right)^m} = {x^m \over y^m} }[/math] _______________________
[math]\displaystyle{ x^m \cdot x^n = x^{m+n} }[/math] _______________________
[math]\displaystyle{ {(x \cdot y)}^n = x^n \cdot y^n }[/math] _______________________
[math]\displaystyle{ {x^m \over x^n} = x^{m-n}, (x \ne 0) }[/math] _______________________

Förenkling

Öva själv

Lär mer

Uttryck, formler och variabler. Förenkla algebraiska uttryck.

Förenkla avancerat exempel.


Exit ticket