Gränsvärden: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 11: Rad 11:


== Upplägget. ==
== Upplägget. ==
<table id="ettFacit" class="toc"><tr><td><div id="toctitle"><h2>Facit</h2></div>
<ul>
<li class="toclevel-1 tocsection-1"><span class="tocnumber">1</span><span class="toctext"> facitText</span></li>
</ul>
</td></tr></table>


== Motivering. ==
== Motivering. ==

Versionen från 30 augusti 2012 kl. 13.27

Lars Adiels är lärare på Norra Real och har skapat sidor om gränsvärden



Här kommer text om gränsvärden.

Upplägget.

Facit

  • 1 facitText

Motivering.

Omgivningar.

Intervall

Om vi tänker oss alla tal mellan två tal a och b så kallas det ett intervall. Det finns intervall av tre typer. Öppna intervall, slutna intervall och halvöppna intervall (se figurer).

Plats för figur

Alltså

Definition
Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b

Ett slutet intervall [a,b] består av alla tal x mellan a och b samt a och b ; a≤x≤b


Uppgift
Rita tallinjer i figuren nedan och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1

plats för figur papper

Uppgift
lägg också in intervallet på en ytterligare tallinje
[math]\displaystyle{ \pi\leq x }[/math].

Tänk! Detta är ett halvöppet intervall som man också kan skriva ::[math]\displaystyle{ \pi\leq\ x\lt \infty }[/math]



Inre punkt i ett intervall

Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.

plats för figur

Definition
En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.


Tänk! Bara punkter A som uppfyller [math]\displaystyle{ a\lt A\lt b }[/math] är inre punkter till intervallet [math]\displaystyle{ a\leq A\leq b }[/math]



Uppgift
Vilket eller vilka av talen [math]\displaystyle{ 1 ; 1.414 ; \sqrt{2} ; 3 ; \pi }[/math] är inre punkter till intervallen
  1. [math]\displaystyle{ ] 1.414 , \pi ] }[/math]
  2. [math]\displaystyle{ [ \sqrt{2} , \sqrt{10} ] }[/math]


Omgivning

Definition
Om en punkt A är inre punkt till ett öppet intervall U kallas U en omgivning till A

Ofta kommer vi att använda symmetriska omgivningar till en punkt som [math]\displaystyle{ A-\epsilon\lt A\lt A+\epsilon }[/math]

där [math]\displaystyle{ \epsilon }[/math] är ett godtyckligt positivt tal > 0 (ofta litet) tal. Det kan också skrivas [math]\displaystyle{ ]A-\epsilon, A+\epsilon[ }[/math].


Uppgift
Uppgifter på omgivningar



Punkterade omgivningar

Ibland undantar man A från själva omgivningen till A då kallas det en punkterad.

Definition
De sammanslagna intervallen [math]\displaystyle{ P_-= \rm{A-a\lt x\lt A} }[/math] och [math]\displaystyle{ P_+=\rm{A\lt x\lt A+b} }[/math] kallas en punkterad omgivning P till A

Det kan också skrivas så här: P är alla x som uppfyller [math]\displaystyle{ ]a,A[ och ]A,b[ }[/math] där a<A och b>A


Tänk! Observera intervallen ovan är öppna

plats för figur

Uppgift
uppgifter punkterade omgivningar


Vänster och höger omgivningar

Oegentliga gränsvärden

Gränsvärden.

Alternativa definitioner.

Facit till vissa uppgifter