Gränsvärden: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
mIngen redigeringssammanfattning
Rad 24: Rad 24:
::<math>\pi\leq x</math>.
::<math>\pi\leq x</math>.
  {{tnkruta|Detta är ett halvöppet intervall som man också kan skriva ::<math>\pi\leq\ x< \infty</math>}}
  {{tnkruta|Detta är ett halvöppet intervall som man också kan skriva ::<math>\pi\leq\ x< \infty</math>}}
}}
Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.
plats för figur
{{defruta|En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.
{{tnkruta|Bara punkter A som uppfyller <math>a<A<b</math> är inre punkter till intervallet <math>a\leq A\leq b</math>}}
}}
{{uppgruta|Vilket eller vilka av talen 1 ; 1.414 ; <math>\sqrt{2}</math> ; 3 ; <math>\pi</math> är inre punkter till intervallen
# ] 1.414 , <math>\pi</math> ]
# [ <math>\sqrt{2} , \sqrt{10}</math> ]
}}
}}



Versionen från 29 augusti 2012 kl. 06.21

Här kommer text om gränsvärden.

Upplägget.

Motivering.

Omgivningar.

Om vi tänker oss alla tal mellan två tal a och b så kallas det ett intervall. Det finns intervall av tre typer. Öppna intervall, slutna intervall och halvöppna intervall (se figurer).

Plats för figur

Alltså

Definition
Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b

Ett slutet intervall [a,b] består av alla tal x mellan a och b samt a och b ; a≤x≤b


Uppgift
Rita tallinjer i figuren nedan och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1

plats för figur papper

Uppgift
lägg också in intervallet på en ytterligare tallinje
[math]\displaystyle{ \pi\leq x }[/math].

Tänk! Detta är ett halvöppet intervall som man också kan skriva ::[math]\displaystyle{ \pi\leq\ x\lt \infty }[/math]



Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.

plats för figur

Definition
En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.


Tänk! Bara punkter A som uppfyller [math]\displaystyle{ a\lt A\lt b }[/math] är inre punkter till intervallet [math]\displaystyle{ a\leq A\leq b }[/math]



Uppgift
Vilket eller vilka av talen 1 ; 1.414 ; [math]\displaystyle{ \sqrt{2} }[/math] ; 3 ; [math]\displaystyle{ \pi }[/math] är inre punkter till intervallen
  1. ] 1.414 , [math]\displaystyle{ \pi }[/math] ]
  2. [ [math]\displaystyle{ \sqrt{2} , \sqrt{10} }[/math] ]


Oegentliga gränsvärden

Gränsvärden.

Alternativa definitioner.

Facit till vissa uppgifter