Räta linjen Ma2c: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
(10 mellanliggande sidversioner av samma användare visas inte)
Rad 1: Rad 1:
= Teori =
__NOTOC__
=Teori=


{{malruta | Räta linjen
{{malruta | Räta linjen
Rad 13: Rad 14:
}}  
}}  


=== Grafiskt ===
I Matte 1-kursen har vi använt oss av räta linjens ekvation för att beskriva vissa typer av samband. I det här avsnittet ska vi repetera grunderna för linjära funktioner och även bygga vidare på det genom att titta på parallella och vinkelräta linjer.


==== Hur ser ekvationen ut för linjen i bilden? ====
===Grafiskt===
 
====Hur ser ekvationen ut för linjen i bilden?====


En rät linje går mellan punkterna.
En rät linje går mellan punkterna.
# Vad har linjen för lutning? '''k-värdet'''
 
# Vad betyder et att k är negativt
#Vad har linjen för lutning? '''k-värdet'''
# Var skär den y-axeln? '''m-värdet'''
#Vad betyder et att k är negativt
# Skriv räta linjens ekvation på formen y = kx + m
#Var skär den y-axeln? '''m-värdet'''
#Skriv räta linjens ekvation på formen y = kx + m


<html>
<html>
Rad 27: Rad 31:
</html>
</html>


=== Beräkna k och m algebraiskt ===
===Beräkna k och m algebraiskt===


hur gör man för att ta fram räta linjens ekvation?
hur gör man för att ta fram räta linjens ekvation?
Rad 45: Rad 49:
En punkt på linjen kan vara att veta var den skär en axel, exempelvis y-axeln.
En punkt på linjen kan vara att veta var den skär en axel, exempelvis y-axeln.


=== Riktningskoefficienten ===
===Riktningskoefficienten===


Egentligen kokar det ner till att man behöver hitta k och m. Om man inte redan har fåt k angivet i uppgiften så tar man fram det på det viset vi lärt oss tidigare:
Egentligen kokar det ner till att man behöver hitta k och m. Om man inte redan har fåt k angivet i uppgiften så tar man fram det på det viset vi lärt oss tidigare:
Rad 66: Rad 70:
{{clear}}
{{clear}}


=== Hitta m ===
===Hitta m===


Om vi har k så är vi halvvägs framme vid att kunna skriva räta linjens ekvation. Det som saknas är ett m-värde.
Om vi har k så är vi halvvägs framme vid att kunna skriva räta linjens ekvation. Det som saknas är ett m-värde.
Rad 72: Rad 76:
m-värdet får vi genom att använda en punkt på linjen. Punkten har ju ett värde på x och y som vi sätter in i räta linjens ekvation tillsammans med vårt k-värde.
m-värdet får vi genom att använda en punkt på linjen. Punkten har ju ett värde på x och y som vi sätter in i räta linjens ekvation tillsammans med vårt k-värde.


: <math> y = kx + m </math>
:<math> y = kx + m </math>


Då är det ju bara m som är obekant.
Då är det ju bara m som är obekant.
Rad 79: Rad 83:
{{clear}}
{{clear}}


=== Parallella och vinkelräta linjer ===
===Parallella och vinkelräta linjer===


{{#ev:youtube|nZuko8vyVs4|400|right}}
{{#ev:youtube|nZuko8vyVs4|400|right}}


==== Parallella linjer ====
====Parallella linjer====
[[File:Parallel Lines.svg|thumb|Parallel Lines]]  
[[File:Parallel Lines.svg|thumb|Parallel Lines]]  


{{defruta|
{{egenskaper|
Två linjer är parallella om de har samma riktningskoefficient.
Två linjer är parallella om de har samma riktningskoefficient.


Rad 93: Rad 97:
{{clear}}
{{clear}}


==== Vinkelräta linjer ====
====Vinkelräta linjer====
   
   
{{defruta|
{{egenskaper|
Två linjer är vinkelräta om produkten av riktningskoefficienterna är minus ett.
Två linjer är vinkelräta om produkten av riktningskoefficienterna är minus ett.


Rad 106: Rad 110:
{{clear}}
{{clear}}


= Exempel =
=Exempel=


=== Bestäm k-värdet ===
===Bestäm k-värdet===


{{exruta|<big>Bestäm k</big>
{{exruta|<big>Bestäm k</big>
Rad 119: Rad 123:
}}
}}


=== Hitta m ===
===Hitta m===


{{exruta|'''<big>Bestäm m</big>'''
{{exruta|'''<big>Bestäm m</big>'''
Rad 141: Rad 145:
}}
}}


=== Problemlösning ===
===Problemlösning===


{{exruta| '''Billig städning + uträkning till exemplet'''
{{exruta| '''Billig städning + uträkning till exemplet'''
Rad 163: Rad 167:
}}
}}


= Bevis =
=== Exempeluppgift ===
 
<pdf>Fil:1240_lösning.pdf</pdf>
 
=== Exempeluppgift 2 ===
 
<pdf>Fil:16170.pdf</pdf>
 
=Bevis=


Bevis för att vinkelräta linjer innebär att <math>k_1 \cdot k_2 = -1 </math>
Bevis för att vinkelräta linjer innebär att <math>k_1 \cdot k_2 = -1 </math>
Rad 173: Rad 185:
Om det är 90<sup>o</sup> mellan linjerna så gäller att:
Om det är 90<sup>o</sup> mellan linjerna så gäller att:


: <math>\alpha = \beta </math>
:<math>\alpha = \beta </math>


Då är enligt figuren (likformighet eller tangens)
Då är enligt figuren (likformighet eller tangens)


: <math>\frac{a}{b} = \frac{c}{d} </math> (1)
:<math>\frac{a}{b} = \frac{c}{d} </math> (1)


Förhållandet mellan sträckorna a/b och c/d ger oss riktingskoeficienterna <math> k_1</math> och <math> k_2</math>
Förhållandet mellan sträckorna a/b och c/d ger oss riktingskoeficienterna <math> k_1</math> och <math> k_2</math>


: <math>k_1  = \frac{a}{b} </math>
:<math>k_1  = \frac{a}{b} </math>


och
och


: <math>k_2 = - \frac{d}{c} </math> eller omskrivet <math>-\frac{1}{k_2} =  \frac{c}{d} </math>
:<math>k_2 = - \frac{d}{c} </math> eller omskrivet <math>-\frac{1}{k_2} =  \frac{c}{d} </math>


Om vi jämför med formel (1) ovan ser vi att
Om vi jämför med formel (1) ovan ser vi att


: <math>k_1  = -1 \cdot \frac{1}{k_2} </math>
:<math>k_1  = -1 \cdot \frac{1}{k_2} </math>


om vi skriver om det har vi den trevligare formen
om vi skriver om det har vi den trevligare formen


: <math>k_1 \cdot k_2  = -1 </math>
:<math>k_1 \cdot k_2  = -1 </math>
 
:V.S.B.


: V.S.B.
=Bevis 2=


= GeoGebra =
<html>
<iframe scrolling="no" title="Vinkelräta linjer Bevis 2" src="https://www.geogebra.org/material/iframe/id/fdeedscj/width/1368/height/738/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1368px" height="738px" style="border:0px;"> </iframe>
</html>
 
= Genomgång =
 
Här tas enpunktsformeln upp. Den är praktisk men inte nödvändig. Den står inte i formelsamlingen.
 
{{defruta| '''Enpunktsformeln'''
 
<math> y-y_1 = k(x-x_1) </math>
}}
 
<pdf>Fil:Enpunktsformeln.pdf</pdf>
 
=GeoGebra=


{{GGB | Räta linjens ekvation  
{{GGB | Räta linjens ekvation  
Rad 204: Rad 233:
}}
}}


=Laboration =
=Laboration=


Vi ska göra en laboration med ett snöre. Ett snöre per person.
Vi ska göra en laboration med ett snöre. Ett snöre per person.
Rad 212: Rad 241:
Följdfrågor
Följdfrågor


# Hur lång är en knut?
#Hur lång är en knut?
# Vilken definnitions- respektive värdemängd har modellen?
#Vilken definnitions- respektive värdemängd har modellen?


Rdovisa dina mätdata i tabeller och grafer samt skriv en redogörelse för modellens giltighet och felkällor. Använd Excel.
Rdovisa dina mätdata i tabeller och grafer samt skriv en redogörelse för modellens giltighet och felkällor. Använd Excel.


= Uppgifter =
=Uppgifter=


=== Obligatoriska uppgifter ===
===Obligatoriska uppgifter===


==== Är linjen rät? ====
====Är linjen rät?====


Ligger punkterna (243,7), (244,18) och (250,84) på en rät linje?
Ligger punkterna (243,7), (244,18) och (250,84) på en rät linje?


==== Vinkelräta linjer ====
====Vinkelräta linjer====


Bestäm funktionen för den räta linje som är vinkelrät mot linjen y = 0.25 x + 12 och skär x-axeln för x = 5.
Bestäm funktionen för den räta linje som är vinkelrät mot linjen y = 0.25 x + 12 och skär x-axeln för x = 5.


=== Interaktiv övning i GeoGebra ===
===Interaktiv övning i GeoGebra===


{{GGB|[https://www.geogebra.org/m/CyNsYTKg  Interaktiv övning]}}
{{GGB|[https://www.geogebra.org/m/CyNsYTKg  Interaktiv övning]}}


=== Bra uppgifter ===
===Bra uppgifter===


{{khanruta|[https://www.khanacademy.org/math/algebra/two-var-linear-equations/forms-of-two-var-linear-equations/e/writing-the-equation-of-a-line-in-any-form Räta linjens ekvation] }}
{{khanruta|[https://www.khanacademy.org/math/algebra/two-var-linear-equations/forms-of-two-var-linear-equations/e/writing-the-equation-of-a-line-in-any-form Räta linjens ekvation] }}


* [[Typtal räta linjens ekvation]]. Grundläggande begrepp som lutning och m-värde.
*[[Typtal räta linjens ekvation]]. Grundläggande begrepp som lutning och m-värde.


=== Repetion och enklare uppgifter ===
===Repetion och enklare uppgifter===


* [http://olleh.se/start/frageprogramMa2.php OlleH]
*[http://olleh.se/start/frageprogramMa2.php OlleH]
* [[Typtal_räta_linjens_ekvation | Typtal räta linjens ekvation]]
*[[Typtal_räta_linjens_ekvation | Typtal räta linjens ekvation]]


= Aktiviteter =
=Aktiviteter=
   
   
=== Repetition och problemlösning ===
===Repetition och problemlösning===


'''''Problemlösning - Diskutera'''''
'''''Problemlösning - Diskutera'''''
Rad 269: Rad 298:
}}
}}


=== Att hitta k och m (algebraiskt) ===
===Att hitta k och m (algebraiskt)===


{{uppgruta|
{{uppgruta|
Rad 281: Rad 310:
}}
}}


==== Latex-tips ====
====Latex-tips====


<pre>
<pre>
Rad 289: Rad 318:
</pre>
</pre>


=== Riktningskoefficienten ===
===Riktningskoefficienten===


{{GGB|[https://www.geogebra.org/m/WHxmVN3F Slope]
{{GGB|[https://www.geogebra.org/m/WHxmVN3F Slope]
Rad 296: Rad 325:
}}
}}


=== Parallella och vinkelräta linjer ===
===Parallella och vinkelräta linjer===
{{uppgfacit|Bevis vinkelräta linjer
{{uppgfacit|Bevis vinkelräta linjer
Bevisa sambandet <math> vinkelräta linjer \Leftrightarrow k_1 * k_2 = -1</math> genom att:
Bevisa sambandet <math> vinkelräta linjer \Leftrightarrow k_1 * k_2 = -1</math> genom att:
Rad 308: Rad 337:
}}
}}


= Python =
=Python=


=== Programmering - räta linjens k- och m-värde ===
===Programmering - räta linjens k- och m-värde===


{{python|[[Räta_linjen_med_Python|Räta linjen med Python]]}}
{{python|[[Räta_linjen_med_Python|Räta linjen med Python]]}}
{{clear}}
{{clear}}


= Lär mer =
=Lär mer=


{| align=right
{| align="right"
|-
|-
| {{sway | [https://sway.com/5BPdtYUg573T9wcC?ref{{=}}Link Räta linjen]}}<br />
|{{sway | [https://sway.com/5BPdtYUg573T9wcC?ref{{=}}Link Räta linjen]}}<br />
|-
|-
| {{wplink| [http://sv.wikipedia.org/wiki/Linj%C3%A4r_ekvation Ekvation] }}<br />
|{{wplink| [http://sv.wikipedia.org/wiki/Linj%C3%A4r_ekvation Ekvation] }}<br />
|-
|-
| {{matteboken |[https://www.matteboken.se/lektioner/matte-2/linjara-funktioner-och-ekvationssystem/linjara-funktioner  Linjära funktioner] }}<br />
|{{matteboken |[https://www.matteboken.se/lektioner/matte-2/linjara-funktioner-och-ekvationssystem/linjara-funktioner  Linjära funktioner] }}<br />
|}
|}


=== Allmän form (linjens ekvation) ===
===Allmän form (linjens ekvation)===


{{svwp |injär_ekvation }}
{{svwp |injär_ekvation }}
Rad 332: Rad 361:
En linjär ekvation kan även skrivas på så kallad allmän form:
En linjär ekvation kan även skrivas på så kallad allmän form:


: <math> Ax + By + C = 0\,</math>
:<math> Ax + By + C = 0\,</math>
 
eller på standardform:
eller på standardform:


: <math> A x +By = C.\,</math>
:<math> A x +By = C.\,</math>


=== Enpunktsformen ===
===Enpunktsformen===


Om man känner till riktningskoefficienten och en punkt <math>(x_0, y_0)</math> på linjen kan man skriva den på enpunktsform:
Om man känner till riktningskoefficienten och en punkt <math>(x_0, y_0)</math> på linjen kan man skriva den på enpunktsform:


: <math> y-y_0 = k(x-x_0)\,</math>
:<math> y-y_0 = k(x-x_0)\,</math>


<html>
<html>
Rad 347: Rad 377:
</html>
</html>


== Problemlösning ==
==Problemlösning==


* [[Kluring_läxa:_Tristan_och_Isolde|Tristan och Isolde]]
*[[Kluring_läxa:_Tristan_och_Isolde|Tristan och Isolde]]
* [http://www.malinc.se/math/functions/slopesv.php MalinC förklarar Räta linjen] Här finns det '''bra förklaringar''' och en del övningar. jag kan rekommendera fler delar av hemsidan. Sök efter sånt som har med vårt kapitel att göra.
*[http://www.malinc.se/math/functions/slopesv.php MalinC förklarar Räta linjen] Här finns det '''bra förklaringar''' och en del övningar. jag kan rekommendera fler delar av hemsidan. Sök efter sånt som har med vårt kapitel att göra.


=== Hitta k och m ===
===Hitta k och m===


* http://www.youtube.com/watch?v=obtLcSrvE_Y
*http://www.youtube.com/watch?v=obtLcSrvE_Y


=== Riktningskoefficienten ===
===Riktningskoefficienten===


=== Parallella och vinkelräta linjer ===
===Parallella och vinkelräta linjer===


: [http://www.malinc.se/math/functions/perpendicularlinessv.php Fin sida för dej som satsar på högre betyg på provet än E/D. ]
:[http://www.malinc.se/math/functions/perpendicularlinessv.php Fin sida för dej som satsar på högre betyg på provet än E/D.]
: [http://mathbits.com/GeometryBits/Slope%20Criteria%20for%20Perpendicular%20Lines.pdf Bevis på engelska om vinkelräta linjer]. Observera att amerikaner använder m i stället för k!
:[http://mathbits.com/GeometryBits/Slope%20Criteria%20for%20Perpendicular%20Lines.pdf Bevis på engelska om vinkelräta linjer]. Observera att amerikaner använder m i stället för k!


== Exit ticket ==
==Exit ticket==


<headertabs />
<headertabs />

Nuvarande version från 14 april 2020 kl. 09.15

[redigera]
Mål för undervisningen Räta linjen

Centralt innehåll:

Begreppet kurva, räta linjens och parabelns ekvation samt hur analytisk geometri binder ihop geometriska och algebraiska begrepp.

Detta avsnitt kommer att behandla:

  • Repetition och problemlösning
  • Att hitta k och m (algebraiskt)
  • Riktningskoefficienten
  • Parallella och vinkelräta linjer


I Matte 1-kursen har vi använt oss av räta linjens ekvation för att beskriva vissa typer av samband. I det här avsnittet ska vi repetera grunderna för linjära funktioner och även bygga vidare på det genom att titta på parallella och vinkelräta linjer.

Grafiskt

Hur ser ekvationen ut för linjen i bilden?

En rät linje går mellan punkterna.

  1. Vad har linjen för lutning? k-värdet
  2. Vad betyder et att k är negativt
  3. Var skär den y-axeln? m-värdet
  4. Skriv räta linjens ekvation på formen y = kx + m

Beräkna k och m algebraiskt

hur gör man för att ta fram räta linjens ekvation?

Här ska vi lära oss hur man tar fram räta linjens ekvation om man bara har två punkter att utgå ifrån eller om man har en punkt och linjens lutning. Det är alltså så att om man vet två saker om sin linje så kan man ta fram räta linjens ekvation och skriva den på formen y = kx + m.

Det handlar alltså om att hitta värdena för k och m.

Definition
Att hitta räta linjens ekvation

För att rita en rät linje eller för att skriva dess ekvation behöver du antingen:

  1. två punkter på linjen eller
  2. en punkt på linjen och dess lutning


En punkt på linjen kan vara att veta var den skär en axel, exempelvis y-axeln.

Riktningskoefficienten

Egentligen kokar det ner till att man behöver hitta k och m. Om man inte redan har fåt k angivet i uppgiften så tar man fram det på det viset vi lärt oss tidigare:

Slope picture
Definition
Riktningskoefficienten


[math]\displaystyle{ k = \frac {y_2 - y_1}{x_2 - x_1} }[/math]


http://www.matteguiden.se/wp-content/uploads/2010/01/linjes-lutning-4.png

http://www.matteguiden.se/wp-content/uploads/2010/01/linjes-lutning-3.png

Hitta m

Om vi har k så är vi halvvägs framme vid att kunna skriva räta linjens ekvation. Det som saknas är ett m-värde.

m-värdet får vi genom att använda en punkt på linjen. Punkten har ju ett värde på x och y som vi sätter in i räta linjens ekvation tillsammans med vårt k-värde.

[math]\displaystyle{ y = kx + m }[/math]

Då är det ju bara m som är obekant.

Använd y = kx + m oxg sätt in koordinaterna för en punkt samt värdet för k. Lös ut m i ekvationen.

Parallella och vinkelräta linjer

Parallella linjer

Parallel Lines
Egenskaper

Två linjer är parallella om de har samma riktningskoefficient.

[math]\displaystyle{ k_1 = k_2 }[/math]

Vinkelräta linjer

Egenskaper

Två linjer är vinkelräta om produkten av riktningskoefficienterna är minus ett.

[math]\displaystyle{ k_1 \cdot k_2= -1 }[/math]


[redigera]

Bestäm k-värdet

Exempel
Bestäm k

Bestäm riktningskoefficienten för den linje som går genom punkterna (1,2) och (4,-3)

Vi räknar ut riktningskoefficienten med hjälp av x- och y-värdena ovan:

[math]\displaystyle{ k = \frac {-3-2}{4-1} = \frac{-5}{3} =- \frac {5}{3} }[/math]


Hitta m

Exempel
Bestäm m
[math]\displaystyle{ k = 2 }[/math] och en punkt är [math]\displaystyle{ (3,5) }[/math]

Sätter man in värdena så får man:

[math]\displaystyle{ 5 = 2 * 3 + m }[/math]

Vilket ger:

[math]\displaystyle{ m= 5 -2 * 3 }[/math]
[math]\displaystyle{ m= 5 -6 }[/math]
[math]\displaystyle{ m= -1 }[/math]

Således: kan vi skriva räta linjens ekvation som

[math]\displaystyle{ y= 2 x - 1 }[/math]


Problemlösning

Exempel
Billig städning + uträkning till exemplet

Uppgift

Erika anställer en städare och får betala för 4 timmar 450 kr och för 9 timmar 990 kr Erika betalar både grundavgift och en avgift per timme. Hur stor är timpenningen Erika måste betala?

Uträkning

Tänk så här:

Kostnaden ökar med [math]\displaystyle{ 990kr-450kr= 540kr }[/math]

Tiden ökar med [math]\displaystyle{ 9-4= 5 timmar }[/math]

[math]\displaystyle{ \frac{990-450}{9-4} = \frac{540}{5} = 108 kr/timme }[/math]

Avgiften per timme blir[math]\displaystyle{ = 108 kr }[/math]


Exempeluppgift

Exempeluppgift 2

[redigera]

Bevis för att vinkelräta linjer innebär att [math]\displaystyle{ k_1 \cdot k_2 = -1 }[/math]

Om det är 90o mellan linjerna så gäller att:

[math]\displaystyle{ \alpha = \beta }[/math]

Då är enligt figuren (likformighet eller tangens)

[math]\displaystyle{ \frac{a}{b} = \frac{c}{d} }[/math] (1)

Förhållandet mellan sträckorna a/b och c/d ger oss riktingskoeficienterna [math]\displaystyle{ k_1 }[/math] och [math]\displaystyle{ k_2 }[/math]

[math]\displaystyle{ k_1 = \frac{a}{b} }[/math]

och

[math]\displaystyle{ k_2 = - \frac{d}{c} }[/math] eller omskrivet [math]\displaystyle{ -\frac{1}{k_2} = \frac{c}{d} }[/math]

Om vi jämför med formel (1) ovan ser vi att

[math]\displaystyle{ k_1 = -1 \cdot \frac{1}{k_2} }[/math]

om vi skriver om det har vi den trevligare formen

[math]\displaystyle{ k_1 \cdot k_2 = -1 }[/math]
V.S.B.
[redigera]

Här tas enpunktsformeln upp. Den är praktisk men inte nödvändig. Den står inte i formelsamlingen.

Definition
Enpunktsformeln

[math]\displaystyle{ y-y_1 = k(x-x_1) }[/math]


[redigera]

Geogebra Undersök med Geogebra-applet: Räta linjens ekvation

Exempel i GGB där du kan ändra och flytta lnjen med glidare


[redigera]

Vi ska göra en laboration med ett snöre. Ett snöre per person.

Ställ upp en modell för snörets längd som funktion av antalet knutar.

Följdfrågor

  1. Hur lång är en knut?
  2. Vilken definnitions- respektive värdemängd har modellen?

Rdovisa dina mätdata i tabeller och grafer samt skriv en redogörelse för modellens giltighet och felkällor. Använd Excel.

[redigera]

Obligatoriska uppgifter

Är linjen rät?

Ligger punkterna (243,7), (244,18) och (250,84) på en rät linje?

Vinkelräta linjer

Bestäm funktionen för den räta linje som är vinkelrät mot linjen y = 0.25 x + 12 och skär x-axeln för x = 5.

Interaktiv övning i GeoGebra

Geogebra Undersök med Geogebra-applet: Interaktiv övning


Bra uppgifter

Öva på Khan: Räta linjens ekvation


Repetion och enklare uppgifter

[redigera]

Repetition och problemlösning

Problemlösning - Diskutera

Jobba själv

Uppgift: Kostnaden för att hyra skidor i Romme

1. Priset för en vuxen att hyra skidutrustning under en dag är 290 kr. Om man hyr i fem dagar kostar det 910 kr. Gör en modell för detta och beräkna priset per dag och den eventuella startkostnaden. Redovisa en ekvation för priset som funktion av antalet dagar.

2. Gå in på länken nedan och studera priserna. Rita grafer. Är priset en linjär funktion av tiden? http://www.rommealpin.se/priser-1__1053

Facit: (klicka expandera till höger)

Se ett diagram över Rommepriserna 2007 här.

Ser du något som kunde gjorts bättre när det gäller skalan på x-axeln.



Att hitta k och m (algebraiskt)

Uppgift

En linje går genom punkterna (-3,4) och (5,-2).

Bestäm räta linjens ekvation.

Ta nu fram ett eget exempel (med lösning) där man bestämmer räta linjens ekvation när man känner två punkter.

Prova att skriv det i Latex på din användarsida i Wikiskola.


Latex-tips

<math>
\frac{\Delta y}{\Delta x} \cdot 
</math>

Riktningskoefficienten

Geogebra Undersök med Geogebra-applet: Slope

Tim Brzezinski (GeoGebra-guru) har skapat en GeoGebrabok med 22 övningar. Bläddra igenom dem och gör till exempel Quiz 1-3.


Parallella och vinkelräta linjer

Uppgift: Bevis vinkelräta linjer

Bevisa sambandet [math]\displaystyle{ vinkelräta linjer \Leftrightarrow k_1 * k_2 = -1 }[/math] genom att:

  1. Visa om vinkelräta linjer [math]\displaystyle{ \Rightarrow k_1 * k_2 = -1 }[/math]
  2. Visa om [math]\displaystyle{ k_1 * k_2 = -1 \Rightarrow }[/math] vinkelräta linjer

Facit: (klicka expandera till höger)



[redigera]

Programmering - räta linjens k- och m-värde

Programmeringsuppgift

Räta linjen med Python

[redigera]
Swayen till detta avsnitt: Räta linjen


Wikipedia Ekvation



Allmän form (linjens ekvation)

Wikipedia skriver om injär_ekvation

En linjär ekvation kan även skrivas på så kallad allmän form:

[math]\displaystyle{ Ax + By + C = 0\, }[/math]

eller på standardform:

[math]\displaystyle{ A x +By = C.\, }[/math]

Enpunktsformen

Om man känner till riktningskoefficienten och en punkt [math]\displaystyle{ (x_0, y_0) }[/math] på linjen kan man skriva den på enpunktsform:

[math]\displaystyle{ y-y_0 = k(x-x_0)\, }[/math]

Problemlösning

Hitta k och m

Riktningskoefficienten

Parallella och vinkelräta linjer

Fin sida för dej som satsar på högre betyg på provet än E/D.
Bevis på engelska om vinkelräta linjer. Observera att amerikaner använder m i stället för k!

Exit ticket