Deriveringsregler för exponentialfunktioner: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
(10 mellanliggande sidversioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | |||
= Teori = | = Teori = | ||
Rad 54: | Rad 53: | ||
= Exempel = | = Exempel = | ||
== Derivatan av 2<sup>x</sup> == | == Exempel 1 - Derivatan av 2<sup>x</sup> (mrd deriveringsregeln för e^x) == | ||
Vi skriver om 2 till <math> e^{ln 2} </math> för att få det på basen e och kunna använda potenslagarna och deriveringsreglerna som vi har med oss sedan tidigare. | Vi skriver om 2 till <math> e^{ln 2} </math> för att få det på basen e och kunna använda potenslagarna och deriveringsreglerna som vi har med oss sedan tidigare. | ||
Rad 65: | Rad 64: | ||
{{clear}} | {{clear}} | ||
== Exempel 2 == | |||
Derivera funktionen <math> f(x) = 3 \cdot 4^{3x} </math> | |||
Vi använder oss av regeln vi precis lärde oss och får följande: | |||
<math> f′(x)=3 \cdot 3 \cdot ln(4) \cdot 4^{3x}=9 \cdot ln(4) \cdot 4^{3x} </math> | |||
== Exempel 3 == | |||
'''Temperaturen (T) i en ugn ökar enligt funktionen nedan, där x är tiden i minuter. Med hur många grader per minut ökar temperaturen vid tiden 15 minuter?''' | |||
: <math> T(x)=120 \cdot 1,09^x </math> | |||
'''Lösningsförslag:''' | |||
Vi ska beräkna hur många grader per minut temperaturen ökar vid tiden 15 minuter, vilket betyder att vi ska beräkna följande: | |||
: <math> T′(15) </math> | |||
Vad vi vill göra är alltså att beräkna funktionens derivata och sedan undersöka derivatans värde då variabeln x (tiden) har värdet 15. | |||
Derivatan av funktionen beräknas med hjälp av deriveringsregeln för <math>f(x) = a^x </math>: | |||
: <math> T′(x)=120 \cdot ln(1,09) \cdot 1,09^x </math> | |||
Vi stoppar in <math>x=15</math> i derivatan och får: | |||
: <math> T′(15)=120 \cdot ln(1,09) \cdot 1,09^{15} ≈ 37,7 </math> | |||
Svar: Antalet grader temperaturen ökar per minut vid 15 minuter är 37,7 grader/minut. | |||
''Exeempel 2 och tre kommer från matteboken.se'' | |||
= Härledning med derivatans definition = | = Härledning med derivatans definition = | ||
Rad 101: | Rad 134: | ||
= Uppgifter = | = Uppgifter = | ||
=== En samling uppgifter === | |||
1) En samling uppgifter finns som pdf på '''Canvas''' och heter Öva logaritmer och derivering av exponentialfunktioner. | |||
2) Det finns ännu fler uppgifter i '''Kunskapsmatrisen'''. | |||
= Lär mer = | = Lär mer = | ||
{| align="right" | |||
|- | |||
| {{matteboken |[https://www.matteboken.se/lektioner/matte-3/derivata/exponentialfunktioner Exponentialfunktioner] }}<br /> | |||
|- | |||
| {{wplink | [https://sv.wikipedia.org/wiki/Exponentialfunktion Exponentialfunktion]}}<br /> | |||
|} | |||
Repetera gärna [[Logaritmer]] från Ma2c. | Repetera gärna [[Logaritmer]] från Ma2c. | ||
<headertabs /> | <headertabs /> |