Parabeln: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
(22 mellanliggande sidversioner av 3 användare visas inte)
Rad 1: Rad 1:
__NOTOC__
=Teori=
{{malruta | '''Parabelns ekvation'''
{{malruta | '''Parabelns ekvation'''


Rad 5: Rad 9:
}}
}}


== Teori ==
===Hur man konstruerar en parabel===
 
=== Hur man konstruerar en parabel ===


En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen.
En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen.
Rad 29: Rad 31:
<br>
<br>


=== Mer om parabeln ===
===Mer om parabeln===
[[Bild:Parabel.svg|miniatyr|En parabel. '''F''' är brännpunkten (''focus''), '''I''' är styrlinjen (''directrix'') och '''A''' är extrempunkten (''vertex''). Avståndet till brännpunkten är lika med avståndet till styrlinjen för varje punkt på parabeln.]]
[[Bild:Parabel.svg|miniatyr|En parabel. '''F''' är brännpunkten (''focus''), '''I''' är styrlinjen (''directrix'') och '''A''' är extrempunkten (''vertex''). Avståndet till brännpunkten är lika med avståndet till styrlinjen för varje punkt på parabeln.]]


Rad 46: Rad 48:
{{clear}}
{{clear}}


== Aktiviteter ==
= Rita i GeoGebra =
 
Vi har tidigare sett flera sätt att konstruera parabler (olika representationer):
 
# Du kan skriva in andragradsfunktinen och grafen är då en parabel.
# Du kan lägga in tre punkter i graphic mode eller kalkylbladet. Med kommandot Polynomial( Lista) skapar du andragradsfunktionen.
# i grafikfönstret kan du rita parabeln genom tre punkter du lagt in
# Nu tillkommer verktyget att konstruera den med '''fokuspunkt''' och '''styrlinje'''
 
=Aktiviteter=
   
   
=== Praktisk övning med penna och snöre ===
===Praktisk övning med penna och snöre===


{{uppgruta| '''Hur gjorde man förr?'''
{{uppgruta| '''Hur gjorde man förr?'''
Rad 56: Rad 67:
}}
}}


=== En PhET-simulering ===
===Hitta funktionen om du vet fokus och styrlinje===
 
[[Fil:Parabel_m_styrlinje_o_fokus.png|300px|right|Övningsuppgift: hitta funktionen]]
 
{{uppgruta| '''Använd algebra för att hitta funktionen till parabeln given till höger utifrån given styrlinje och fokuspunkt'''
 
Vi ska använda oss av algebra för att ta fram funktionen till den givna parabeln i figuren till höger, utifrån att vi vet dess styrlinje och fokuspunkt.
 
'''OBS!''' Du behöver '''inte''' använda GeoGebra till detta.
 
# Markera '''en ''godtycklig'' punkt (x,y)''' på grafen, du behöver inte ange dess värde.
# Skriv ett uttryck för avståndet '''från punkten (x, y) till linjen'''. Använd avståndsformeln.
# Skriv ett uttryck för avståndet '''från punkten (x, y) till fokus'''. Använd avståndsformeln.
# För en parabel är avståndet från en punkt (x, y) till fokus det samma som avståndet från samma punkt (x, y) till linjen. Visa detta genom att sätta de två '''avståndsuttrycken från 2 och 3 lika'''.
# '''Lös ut y''' ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna så att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.
 
Nu är du klar. Ekvationen du fått fram beskriver parabeln. Testa att rita ut den.
}}
<br />
 
= Anteckningar =
 
<pdf>Fil:Hitta_funktionen_om_du_vet_styrlinje_och_fokus.pdf</pdf>


= En PhET-simulering =
PhET står för Physics, Education & Technology och är en avdelning vid universitetet i Colorado och de tillverkar många fina simuleringar inom matematik, fysik och kemi.
PhET står för Physics, Education & Technology och är en avdelning vid universitetet i Colorado och de tillverkar många fina simuleringar inom matematik, fysik och kemi.


Parabeln kan skrivas som en funktion <math>y = ax^2 + bx +c </math> men det talar vi om senare i kursen.
Parabeln kan skrivas som en funktion <math>y = ax^2 + bx +c </math> men det talar vi om senare i kursen.


<html><iframe src="https://phet.colorado.edu/sims/equation-grapher/equation-grapher_en.html" width="800" height="600" scrolling="no" allowfullscreen></iframe></html>
<html>
<iframe src="https://phet.colorado.edu/sims/html/graphing-quadratics/latest/graphing-quadratics_en.html" width="800" height="600" scrolling="no" allowfullscreen></iframe>
</html>


{{uppgruta| '''Återskapa pHET-en ovan i GeoGebra'''
{{uppgruta| '''Återskapa pHET-en ovan i GeoGebra'''
Rad 79: Rad 115:
}}
}}


=== Hitta funktionen om du vet fokus och styrlinje ===
=Python=
 
[[Fil:Parabel_m_styrlinje_o_fokus.png|300px|right|Övningsuppgift: hitta funktionen]]


{{uppgruta| '''Använd algebra för att hitta parabelns funktion'''
En [https://www.101computing.net/projectile-motion-formula/ övning] som behöver förbättras med plats för eleverna att kommentera programmet.


'''OBS!''' Du ska '''inte''' använda GeoGebra till detta.
Eller så är uppgiften helt enkelt att testa programmet, kommentera koden utförligt och modifiera programmet om man vill.


Den här uppgiften utgår ifrån att du vet styrlinjen och fokuspunkten men ska ta fram funktionen. '''Se figuren till höger'''.
Programmet kräver [https://py.processing.org/tutorials/gettingstarted/ Processing].


# Börja med att markera '''en ''godtycklig'' punkt (x,y)''' på grafen i första kvadranten.
kanske hellre använda MatPLotLib, exempelvsi [https://stackoverflow.com/questions/34232664/projectile-motion-simple-simulation-using-numpy-matplotlib-python här]
# Skriv ett uttryck för avståndet '''från (x, y) till linjen'''.
# Skriv ett uttryck för avståndet '''från (x, y) fokus'''.
# Det gäller för en parabel att avståndet från (x, y) till fokus är samma som avståndet från (x, y) till linjen. Visa detta genom att sätta de två '''uttrycken lika'''.
# '''Lös ut y''' ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.


Nu är du klar. Ekvationen du fick beskriver parabeln.
=Lär mer=
}}


== Lär mer ==
{| align="right"
 
{| align=right
|-
|-
| {{sway | [https://sway.com/iAbzxDUvVtR0U8xk Parabeln]}}<br />
|{{sway | [https://sway.com/DN80Nu9LkOj4SrYx Parabeln]}}<br />
|-
|-
| {{gleerups| Det saknas innehåll om parabeln som geometrisk kurva. }}<br />
|{{wplink| [https://sv.wikipedia.org/wiki/Parabel_(kurva) parabel]}}<br />
|-
|-
| {{matteboken |[https://www.matteboken.se/lektioner/matte-2/geometri/parabelns-ekvation parabelns ekvation] }}<br />
|{{matteboken |[https://www.matteboken.se/lektioner/matte-2/geometri/parabelns-ekvation Parabelns ekvation] }}<br />
|}
|}


# Artikeln på {{enwp|Parabola}} avslutas med ett fint bildgalleri med tillämpningar.
#[//wikiskola.se/images/Parabeluppgifter.pdf Ett övningsprov på parabler]
# Parabelns egenskaper i med tangenter och normaler. Du kan lära dig mer om hur parabeln fungerar och vad den har för egenskaper med denna  '''datorövning:''' [http://www.malinc.se/math/functions/parabolasv.php Malin C GGB-övning]  
#[//wikiskola.se/images/Provuppgift_Parabeln.pdf Prov parabel 2018] med utkast till [//wikiskola.se/images/L%C3%B6sning_av_d-uppgiften.jpg lösning av d-uppgiften].
# Du lägger in styrlinje och fokuspunkt i GGB. Kan du använda avståndsformeln för att definiera en punkt med x-värde som ändras med en glidare och y-värde som ger samma avstånd till styrlinjen som till fokuspunkten? Punkten lägger du trace på.
#[//wikiskola.se/images/Provuppgift_Parabeln_B.pdf Prov parabel B 2018] med [//wikiskola.se/images/Parabel_B_l%C3%B6sniningar.png lösning].
#Artikeln på {{enwp|Parabola}} avslutas med ett fint bildgalleri med tillämpningar.
#Parabelns egenskaper i med tangenter och normaler. Du kan lära dig mer om hur parabeln fungerar och vad den har för egenskaper med denna  '''datorövning:''' [http://www.malinc.se/math/functions/parabolasv.php Malin C GGB-övning]
#Du lägger in styrlinje och fokuspunkt i GGB. Kan du använda avståndsformeln för att definiera en punkt med x-värde som ändras med en glidare och y-värde som ger samma avstånd till styrlinjen som till fokuspunkten? Punkten lägger du trace på.
#Vad händer här?
 
<html>
<iframe scrolling="no" title="" src="https://www.geogebra.org/material/iframe/id/DhZnq7tx/width/973/height/602/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="973px" height="602px" style="border:0px;"> </iframe>
</html>
{{clear}}
{{clear}}


== Exit ticket ==
== Khan - Shifting Pabolas ==
 
Intressant övning att flytta parabler: [https://www.khanacademy.org/math/algebra/quadratics/transforming-quadratic-functions/e/shift-parabolas Shifting Parabolas]
 
==Exit ticket==


{{uppgruta| '''Skriv på en bit papper vad denna GeoGebra visar'''
{{uppgruta| '''Skriv på en bit papper vad denna GeoGebra visar'''
Rad 122: Rad 161:
</html>
</html>
}}
}}
<headertabs />

Nuvarande version från 4 mars 2019 kl. 09.43


[redigera]
Mål för undervisningen Parabelns ekvation

Centralt Innehåll:

  • Begreppet kurva, räta linjens och parabelns ekvation samt hur analytisk geometri binder ihop geometriska och algebraiska begrepp.


Hur man konstruerar en parabel

En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen.

Avståndet till styrlinjen är lika med avståndet till fokus


Länk till filen på Geogebratube: http://www.geogebratube.org/material/show/id/39100

Lösning av problem.
Definition

En parabel är den kurva där varje punkt på kurvan har samma avstånd till en given punkt (brännpunkten eller fokus) och till en given rät linje (styrlinjen).


Alla inkommande strålar i parabelns plan som infaller i parabelns öppna del och som är parallella med parabelns symmetrilinje reflekteras mot samma punkt, brännpunkten. Denna ligger på symmetriaxeln ett kort stycke från parabelns vertex.

Mer om parabeln

En parabel. F är brännpunkten (focus), I är styrlinjen (directrix) och A är extrempunkten (vertex). Avståndet till brännpunkten är lika med avståndet till styrlinjen för varje punkt på parabeln.
Definition
Styrlinje är en linje som används för att konstruera parabeln. Ett annat ord för styrlinje är direktris.
Brännpunkt kallas också fokus.
Brännpunkten (fokuspunkten) är den punkt där alla parallellt infallande ljusstrålar sammanfaller.


Uppgift
Fundera:
  1. Vad är inte en parabel?
  2. Vad är skillnaden på parabel och parabol?
[redigera]

Vi har tidigare sett flera sätt att konstruera parabler (olika representationer):

  1. Du kan skriva in andragradsfunktinen och grafen är då en parabel.
  2. Du kan lägga in tre punkter i graphic mode eller kalkylbladet. Med kommandot Polynomial( Lista) skapar du andragradsfunktionen.
  3. i grafikfönstret kan du rita parabeln genom tre punkter du lagt in
  4. Nu tillkommer verktyget att konstruera den med fokuspunkt och styrlinje
[redigera]

Praktisk övning med penna och snöre

Uppgift
Hur gjorde man förr?

Konstruera parablar med hjälp av snöre, penna, fokalpunkt och styrlinje.



Hitta funktionen om du vet fokus och styrlinje

Övningsuppgift: hitta funktionen
Övningsuppgift: hitta funktionen
Uppgift
Använd algebra för att hitta funktionen till parabeln given till höger utifrån given styrlinje och fokuspunkt

Vi ska använda oss av algebra för att ta fram funktionen till den givna parabeln i figuren till höger, utifrån att vi vet dess styrlinje och fokuspunkt.

OBS! Du behöver inte använda GeoGebra till detta.

  1. Markera en godtycklig punkt (x,y) på grafen, du behöver inte ange dess värde.
  2. Skriv ett uttryck för avståndet från punkten (x, y) till linjen. Använd avståndsformeln.
  3. Skriv ett uttryck för avståndet från punkten (x, y) till fokus. Använd avståndsformeln.
  4. För en parabel är avståndet från en punkt (x, y) till fokus det samma som avståndet från samma punkt (x, y) till linjen. Visa detta genom att sätta de två avståndsuttrycken från 2 och 3 lika.
  5. Lös ut y ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna så att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.

Nu är du klar. Ekvationen du fått fram beskriver parabeln. Testa att rita ut den.


[redigera]

PhET står för Physics, Education & Technology och är en avdelning vid universitetet i Colorado och de tillverkar många fina simuleringar inom matematik, fysik och kemi.

Parabeln kan skrivas som en funktion [math]\displaystyle{ y = ax^2 + bx +c }[/math] men det talar vi om senare i kursen.

Uppgift
Återskapa pHET-en ovan i GeoGebra

Målet är att skapa en snygga applikation som kommunicerar matematik genom att den som använder din GeoGebraapplikation ska lära sig något.

Skriv in funktionen på allmän form. Låt glidarna skapas.

Placera ut objekten snyggt. Sätt färg. Välj textstorlek och tjocklek på kurvan.

Skriv en förklarande text så att användaren får en uppgift att utföra och lär sig något.

När du har en snygg applikationen visar du den för någon i rummet som inte sett den innan och ber om respons.

Nu tar du responsen och förbättrar din applikation och sedan sparar du den på din profil.


[redigera]

En övning som behöver förbättras med plats för eleverna att kommentera programmet.

Eller så är uppgiften helt enkelt att testa programmet, kommentera koden utförligt och modifiera programmet om man vill.

Programmet kräver Processing.

kanske hellre använda MatPLotLib, exempelvsi så här

[redigera]
Swayen till detta avsnitt: Parabeln


Wikipedia parabel



  1. Ett övningsprov på parabler
  2. Prov parabel 2018 med utkast till lösning av d-uppgiften.
  3. Prov parabel B 2018 med lösning.
  4. Artikeln på Wikipedia:Parabola avslutas med ett fint bildgalleri med tillämpningar.
  5. Parabelns egenskaper i med tangenter och normaler. Du kan lära dig mer om hur parabeln fungerar och vad den har för egenskaper med denna datorövning: Malin C GGB-övning
  6. Du lägger in styrlinje och fokuspunkt i GGB. Kan du använda avståndsformeln för att definiera en punkt med x-värde som ändras med en glidare och y-värde som ger samma avstånd till styrlinjen som till fokuspunkten? Punkten lägger du trace på.
  7. Vad händer här?

Khan - Shifting Pabolas

Intressant övning att flytta parabler: Shifting Parabolas

Exit ticket

Uppgift
Skriv på en bit papper vad denna GeoGebra visar