Tillämpningar på exponentiell förändring: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Jens (diskussion | bidrag) (→Ocker) |
Hakan (diskussion | bidrag) |
||
(42 mellanliggande sidversioner av 4 användare visas inte) | |||
Rad 1: | Rad 1: | ||
[[Fil: | __NOTOC__ | ||
= Att använda GeoGebra för beräkningar = | |||
[[Fil:Log i GGB.JPG|300px|höger]] | |||
GeoGebra har flera funktioner för att beräkna logaritmer. Prova hur det fungerar med några kända logaritmer, exempelvis <math>log(100)</math>. | |||
Du ser att GeoGebra har en funktion för tio-logaritmen, <math>Log10(<x>)</math>. Men om du skriver <math>Log(1000)</math> får du inte lösningen 3. Det beror på att GeoGebra skriver den naturliga logaritmen (som ofta förkortas ln x) som Log. Den naturliga logaritmen har basen e, där e är ungefär 2.72. | |||
Om du vill styra vilken bas som används väljer du kommandot <math>log( <b> , <x> )</math> där första argumentet <math><b></math> är basen och <math><x></math> det tal du vill logaritmera. | |||
Prova följande: | |||
: log(2.718) | |||
: log2(128) | |||
: log(3,27) | |||
Observera att logaritmlagarna gäller för alla baser. | |||
Om du har en kvot av två logaritmer spelar det ingen roll vilken bas du väljer vid beräkningen. Prova till exempel <math> \frac{log 9}{log 2} </math> i olika baser (dock samma bas i täljare och nämnare). | |||
= Ekonomiska modeller = | |||
De första av dessa ekonomiuppgifter är potensfunktioner men på slutet träffar du på exponentiafunktioner. | |||
== | * Potensfunktionen <math> a = b x^k </math> har lösningen <math> x = (\frac{a}{b})^\frac{1}{k} </math> | ||
* Exponentialekvationer löser du genom logaritmering. | |||
==== Uppgifter ==== | ==== Uppgifter ==== | ||
{{uppgruta| | {{uppgruta| | ||
# Antag att du köper en bil. Du räknar med att den sjunker i värde med 12 % om året. Vad är den värd om x år? | # Antag att du köper en bil. Du räknar med att den sjunker i värde med 12 % om året. Vad är den värd om x år? | ||
# Din kompis lånar pengar av ett kreditinstitut. Den effektiva räntan verkar inte så farligt hög säger hen. Gå in på nätet och se vad de erbjuder för räntor och | # Du köper en telefon på avbetalning under 48 månader. Telefonen kostar 11 500 kr och beräknas ha restvärdet 2000 kr när lånet löper ut. Vilken värdeminskning per månad har man räknat med? | ||
# Din svåger har köpt en andelslägenhet i | # Din kompis lånar pengar av ett kreditinstitut. Den effektiva räntan verkar inte så farligt hög säger hen. Gå in på nätet och se vad de erbjuder för räntor och räkna ut vad det kostar på fem år med ränta på ränta. Kolla om långivarens uträkningar stämmer. | ||
# Din svåger har köpt en andelslägenhet i fjällen och ska hyra ut sin andel genom en förmedling. De erbjuder ett kontrakt där ersättningen ska vara 20 000 per år med en uppräkning på 3.5 procent per år. Avtalet ska gälla i tio år. Ge ett motförslag som baserar sig på en lägre ersättning första året men ger mer pengar i slutändan. Hur gör man avtalet för att tjäna mer pengar totalt sett? | |||
}} | }} | ||
Rad 21: | Rad 43: | ||
Det kallas ocker om någon lånar ut pengar till oskäligt hög ränta. | Det kallas ocker om någon lånar ut pengar till oskäligt hög ränta. | ||
Kreditinstitutet Ruffel och Båg lånar ut 16 000 kr i sex månader till en kund som måste betala | Kreditinstitutet Ruffel och Båg lånar ut 16 000 kr i sex månader till en kund som måste betala till baks 22 000 kr när halvåret passerat. Vilken är månadsräntan?}} | ||
==== Säker tillväxt ==== | |||
{{uppgfacit| '''Obligationer''' | |||
Eskil köper obligationer för 7 500 kronor. Obligationerna ger en årlig ränta på 3,5 %. Sedan går åren och Eskil tänker inte så mycket på sina värdepapper men så en dag kommer ett årsbesked som meddelar att hans obligationer nu är värda 12 050 kronor. | |||
Hur många år har Eskil haft sina obligationer? | |||
| | |||
Ungefär 13,8 år eller cirka 13 år och 10 månader | |||
}} | |||
===Bajtcoin=== | ===Bajtcoin=== | ||
{{uppgruta| | {{uppgruta| | ||
Rad 27: | Rad 61: | ||
I ett parallellt universum existerar Bajtcoin, en valuta som alla handlar med. Ingen vet hur Bajtcoins fungerar men ingen vågar säga det så alla fortsätter använda dem ändå. Folket i detta universum har observerat att ett liknande fenomen har skett i vårt universum. Vi är de första som kommer i kontakt med folket från det parallella universumet och de har väldigt specifika frågor som behöver besvaras utifrån väldigt specifik information: | I ett parallellt universum existerar Bajtcoin, en valuta som alla handlar med. Ingen vet hur Bajtcoins fungerar men ingen vågar säga det så alla fortsätter använda dem ändå. Folket i detta universum har observerat att ett liknande fenomen har skett i vårt universum. Vi är de första som kommer i kontakt med folket från det parallella universumet och de har väldigt specifika frågor som behöver besvaras utifrån väldigt specifik information: | ||
'''Information''' | '''Information''' | ||
* | *Från början var bajtcoins var värda 1234 enheter | ||
*<math>f(5) = 6789</math>, där f(x) är en exponentialfunktion som beräknar Bajtcoins värde efter x dagar | *<math>f(5) = 6789</math>, där f(x) är en exponentialfunktion som beräknar Bajtcoins värde efter x dagar | ||
'''Fråga''' | '''Fråga''' | ||
Rad 33: | Rad 67: | ||
}} | }} | ||
= Tillväxt BNP = | |||
{{uppgfacit|BNP | {{uppgfacit|BNP | ||
Rad 41: | Rad 75: | ||
Det finns en förklarande [https://www.nyteknik.se/teknikrevyn/exponentiell-tillvaxt-6345198 artikel i Ny Teknik] | Det finns en förklarande [https://www.nyteknik.se/teknikrevyn/exponentiell-tillvaxt-6345198 artikel i Ny Teknik] | ||
| | | | ||
: <math> x^{21} = 2</math> | |||
}} | : <math> x = 2^{\frac{1}{21}} = 1.0336</math> | ||
= | |||
Svar: 3,36 % /år | |||
}} | }} | ||
= pH = | |||
[[Fil:Indicateurs colorés de pH.jpg|miniatyr|Några olika pH-indikatorer]] | [[Fil:Indicateurs colorés de pH.jpg|miniatyr|Några olika pH-indikatorer]] | ||
Rad 95: | Rad 108: | ||
}} | }} | ||
= Halveringstid = | |||
[[Fil:Activity decay.svg|mini|Radioaktivitet som funktion av tid; halveringstiden T<sub>½</sub> = ln(2)*τ, där τ är medellivstiden.]] | |||
Här räknar vi på radioaktivt sönderfall, kol-14-metoden och liknande uppgifter. | |||
Halveringstid är den tid efter vilken hälften av en given mängd av ett radioaktivt grundämne har sönderfallit. För en enskild instabil partikel kan halveringstiden tolkas som den tid efter vilken sannolikheten är 50% för att partikeln skall ha sönderfallit. Begreppet halveringstid används ofta i samband med radioaktivt sönderfall men kan även beskriva andra former av sönderfall eller nedbrytning, speciellt sådana processer som avtar exponentiellt. | Halveringstid är den tid efter vilken hälften av en given mängd av ett radioaktivt grundämne har sönderfallit. För en enskild instabil partikel kan halveringstiden tolkas som den tid efter vilken sannolikheten är 50% för att partikeln skall ha sönderfallit. Begreppet halveringstid används ofta i samband med radioaktivt sönderfall men kan även beskriva andra former av sönderfall eller nedbrytning, speciellt sådana processer som avtar exponentiellt. | ||
Rad 146: | Rad 163: | ||
''Texten från [http://fragelada.fysik.org/index.asp?keyword=kol-14+metoden NRCFs frågelåda i Fysik]'' | ''Texten från [http://fragelada.fysik.org/index.asp?keyword=kol-14+metoden NRCFs frågelåda i Fysik]'' | ||
= Befolkningstillväxt = | |||
{{uppgfacit|'''Jordens befolkning växer''' | {{uppgfacit|'''Jordens befolkning växer''' | ||
Rad 179: | Rad 196: | ||
== Liket kallnar == | = Liket kallnar = | ||
Det bör komma från en gammal NP-uppgift. Hur som helst så har vi ett lik som kl 8 på morgonen är 30.5<sup>o</sup>C och sex timmar senare 26.5<sup>o</sup>C. När mordet skedde var kroppen 37<sup>o</sup>C. Hur lång tid hade gått innan liket hittades? | |||
=== GeoGebra === | |||
I GeoGebran nedan lades punkterna för de två temperaturmätningarna in. Sedan skrevs den allmänna exponentialfunktionen in med glidare för C och a. Efter anpassning fanns skärningspunkten med linjen y = 37. Tiden avlästes. | |||
En GeoGebra ger på detta sätt en grafisk illustration till problemet vilket ökar förståelsen. Därtill ger den ett facit och ett tillräckligt exakt svar till uppgiften. | |||
<html> | |||
<iframe scrolling="no" title="Liket kallnar" src="https://www.geogebra.org/material/iframe/id/GWNUMZdS/width/697/height/234/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="697px" height="234px" style="border:0px;"> </iframe> | |||
</html> | |||
=== Lösningsförslag Liket kallnar === | |||
{{exruta| | |||
Formelsamlingen ger oss den generella exponentialfunktionen | |||
: <math> f(x)= C a^x </math> | |||
Vi sätter tiden <math> t=0 </math> vid kl 08.00 då temperaturen <math> T=30.5^oC </math> | |||
Det ger oss konstanten C: | |||
: <math> f(0)=30.5= C a^0=C </math> | |||
Nu använder vi kroppstemperaturen kl 14.00, dvs 6 timmar senare. | |||
: <math> f(6)=26.5= 30.5 a^6=C </math> | |||
Vilket ger a: | |||
: <math> a= (\frac{26.5}{30.5})^{\frac{1}{6}}=0.97 </math> | |||
Nu behöver vi bara ta reda på hur mycket tid som förflutit från mordet fram till första temperaturmätningen. | |||
: <math> f(x)=37.0= 30.5 a^x </math> | |||
Vilket omskrivet blir | |||
: <math> a^x =\frac{37.0}{30.5} </math> | |||
Logaritmering ger | |||
: <math>x= \frac{ log(\frac{37.0}{30.5}) }{0.97}</math> | |||
Egentligen ska man använda det exakta värdet för 0.97 | |||
}} | |||
== Liket av en banktjänsteman == | |||
<html> | <html> | ||
<iframe scrolling="no" title="Ma2bc 2558 eller 2491 kallnande lik exponentialfunktion" src="https://www.geogebra.org/material/iframe/id/efV9fFuu/width/1250/height/891/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1250px" height="891px" style="border:0px;"> </iframe> | <iframe scrolling="no" title="Ma2bc 2558 eller 2491 kallnande lik exponentialfunktion" src="https://www.geogebra.org/material/iframe/id/efV9fFuu/width/1250/height/891/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1250px" height="891px" style="border:0px;"> </iframe> | ||
</html> | </html> | ||
<headertabs /> |
Nuvarande version från 4 april 2019 kl. 12.00