NP muntligt övning: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
Rad 12: Rad 12:


Presentationen gör du i slutet av lektionen eller nästa lektion.
Presentationen gör du i slutet av lektionen eller nästa lektion.
=== Uppgift 1 ===
Rita ut och beräkna längden av vektorn <math>\mathbf{w} = 3 \mathbf{u} - \mathbf{v} </math> om <math>\mathbf{u} = (2, 3) </math> och <math>\mathbf{v}</math> är vektorn som börjar i punkten <math> (1, 3)</math> och slutar i punkten <math>(4, 5)</math>.
=== Uppgift 2 ===
Bestäm enhetsvektorn för <math>\mathbf{w} = \mathbf{u} - 3 \mathbf{v} </math> om <math>\mathbf{u} = (-1, 7) </math> och <math>\mathbf{v} = (0, 2) </math>.
=== Uppgift 3 ===
Dela upp <math>\mathbf{w} = 7 \mathbf{u} - 2 \mathbf{v} </math> i dess x- och y-komposanter om <math>\mathbf{u} = (2, 4) </math> och <math>\mathbf{v} = (-4, 2) </math>

Nuvarande version från 18 oktober 2018 kl. 20.01

Teori

Vad innebär det att visa resonemangs- och kommunikationsförmåga?

Aktivitet

Du ska lösa en av de uppgifter som finns nedan. När du har en bra lösning som du är nöjd med ska du lära dig den ordentligt så att du kan presentera den muntligt på tre minuter.

För att komama fram till en bra lösning får du ta hjälp av internet, digitala verktyg, läroböcker och kamrater.

Du får 40 minuter på dig för dina förberedelser.

Presentationen gör du i slutet av lektionen eller nästa lektion.

Uppgift 1

Rita ut och beräkna längden av vektorn [math]\displaystyle{ \mathbf{w} = 3 \mathbf{u} - \mathbf{v} }[/math] om [math]\displaystyle{ \mathbf{u} = (2, 3) }[/math] och [math]\displaystyle{ \mathbf{v} }[/math] är vektorn som börjar i punkten [math]\displaystyle{ (1, 3) }[/math] och slutar i punkten [math]\displaystyle{ (4, 5) }[/math].

Uppgift 2

Bestäm enhetsvektorn för [math]\displaystyle{ \mathbf{w} = \mathbf{u} - 3 \mathbf{v} }[/math] om [math]\displaystyle{ \mathbf{u} = (-1, 7) }[/math] och [math]\displaystyle{ \mathbf{v} = (0, 2) }[/math].

Uppgift 3

Dela upp [math]\displaystyle{ \mathbf{w} = 7 \mathbf{u} - 2 \mathbf{v} }[/math] i dess x- och y-komposanter om [math]\displaystyle{ \mathbf{u} = (2, 4) }[/math] och [math]\displaystyle{ \mathbf{v} = (-4, 2) }[/math]