Lektion 9 Cirkelns ekvation: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
 
(2 mellanliggande sidversioner av samma användare visas inte)
Rad 1: Rad 1:
{{flipp}}
== Vad är en cirkel? ==
{{#ev:youtube | cnYw3spciJc |340 |right |Sid 37-39 - Cirkelns ekvation, av åke Dahllöf}}


{{defruta|'''Cirkeln'''
{{defruta|'''Cirkeln'''
Rad 4: Rad 8:
* Avståndet från mittpunkten till cirkeln är radien.
* Avståndet från mittpunkten till cirkeln är radien.
}}
}}
{{#ev:youtube | cnYw3spciJc |340 |right |Sid 37-39 - Cirkelns ekvation, av åke Dahllöf}}


=== Centrum i origo ===
=== Centrum i origo ===
Rad 52: Rad 54:
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/1488831/width/635/height/454/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="635px" height="454px" style="border:0px;"> </iframe>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/1488831/width/635/height/454/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="635px" height="454px" style="border:0px;"> </iframe>
</html>
</html>
{{flipp}}


== [[Fördjupningsuppgifter på cirkelns ekvation]] ==
== [[Fördjupningsuppgifter på cirkelns ekvation]] ==

Nuvarande version från 22 september 2015 kl. 20.54

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!

Vad är en cirkel?

Sid 37-39 - Cirkelns ekvation, av åke Dahllöf
Definition
Cirkeln
  • En cirkel består av de punkter som ligger på samma avstånd till cirkelns mittpunkt.
  • Avståndet från mittpunkten till cirkeln är radien.


Centrum i origo

En cirkel med radien 2.

En cirkel med centrum i origo och radien r kan skrivas på formen:

[math]\displaystyle{ x^2 + y^2 = r^2.\!\ }[/math]

En punkt på cirkeln har ett avstånd från origo som beskrivs genom Pythagoras. I figuren till höger är radien roten ur 4, dvs 2.

Wikipedia skriver om Pythagoras sats

Flytta cirkelns mittpunkt

En cirkel med radien 2

I ett koordinatsystem kan en cirkel med mittpunkt i (a, b) och radien r, beskrivas som mängden av punkter som uppfyller ekvationen

[math]\displaystyle{ \left(x - a \right)^2 + \left( y - b \right)^2=r^2. }[/math]


Ekvationen kan ställas upp genom utnyttjande av Pythagoras sats för avståndet mellan punkterna [math]\displaystyle{ (a,b) }[/math] och [math]\displaystyle{ (x,y) }[/math].

Se det som att man flyttar cirkelns mittpunkt från origo till punkten [math]\displaystyle{ (a,b) }[/math] genom att sätta in a och b i uttrycket ovan.

Exempel

Cirkelns ekvation är:

[math]\displaystyle{ 9=(x+2)^2+(y-3)^2 }[/math]

Den här cirkeln har sin mittpunkt i x = -2 och y = 3. Det är de värdena som ger noll inom respektive parentes.

Pröva att sätta in x = 0 respektive y = 0 ger punkterna där cirkeln skär axlarna.

Var skär cirkeln x-axeln?

Cirkel med glidare

Fördjupningsuppgifter på cirkelns ekvation