Integraler Ma4: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
(25 mellanliggande sidversioner av samma användare visas inte)
Rad 1: Rad 1:
[[Category:Matematik]] [[Category:Ma4]]  [[Category:Samband och förändring]]  [[Category:Integraler]]
== Förförståelsetest med NP-uppgifter ==
== Förförståelsetest med NP-uppgifter ==


Rad 17: Rad 19:
* [http://sv.wikibooks.org/wiki/Formelsamling/Matematik/Derivering_och_integrering Formelsamling på WikiBooks] med derivering och integrering.
* [http://sv.wikibooks.org/wiki/Formelsamling/Matematik/Derivering_och_integrering Formelsamling på WikiBooks] med derivering och integrering.


== Integral och area ==
== [[Integral och area]] ==
 
{{Lm4|Tillämpningar|152-158}}
 
=== Hemuppgift ===
 
Gör bokens övning på sid 158.
 
Den handlar om arean under funktion
 
: <math> f(x) = \cos(kx) </math>
 
mellan skärningspunkterna med x-axeln.
 
k varierar från 1 till 5.
 
<html>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/586821/width/800/height/503/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe>
</html>
 
Länk till [http://www.geogebratube.org/material/show/id/586821 GeoGebraTube]
 
== Integralens värde och tillämpningar ==
 
=== Fritt fall ===
 
Titta gärna på wikipediatexten om [[Differentialekvationer_Ma4#Fritt_fall|fritt fall]] som ligger på förra avsnittet om diffekvationer.
 
{{Lm4|Tillämpningar|159-163}}
 
=== Fysik och integraler - Hemuppgift ===
 
{{uppgruta | '''Fysik och integraler'''
Lös någon eller några av uppgifterna hemma. Välj sedan en som du gör en snygg skriftlig redovisning av.
 
Du ska vara beredd att gå fram och redovisa uppgiftens lösning på tavlan.
 
Uppgifterna med sträcka hastighet är nog enklast. Du får sträckan genom att integrera hastighetsfunktionen.
 
[[media: Problemlösning_fysik_och_integraler.pdf | Problemlösning Fysik och Integraler]]
 
'''Redovisning''': På tavlan.
 
}}
 
== Numerisk lösning av integraler ==
 
=== Numerisk lösning av integraler ===
{{#ev:youtube | IcecyaONFwI | 340 | right | Trapetsmetoden för lösning av integraler. Av Tomas Severin, Youtubelicens.}}
 
Läs vad {{svwp |Trapetsmetoden}}
 
<html>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/55936/width/1218/height/677/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="1218px" height="677px" style="border:0px;"> </iframe>
</html>
 
{{clear}}
 
=== Hemuppgift trapetsmetoden===
 
{{uppgfacit | En NP-uppgift med trapetsmetoden
Lös den här uppgiften hemma.
 
[[Fil:Nationellt prov, kurs D, vt 1999 - en integraluppgift.png|miniatyr|590px | left | Integraluppgift från Nationellt prov, kurs D,vt 1999]]
 
{{clear}}
'''Räkna även ut integralens värde med trapetsmetoden.'''
 
Var beredd att redovisa din lösning vid tavlan. Dina frågor och kommentarer kommer även att vara till nytta när vi diskuterar uppgiften grundligt.
|
Läs inte den här ledtråden förrän du har försökt själv med uppgiften. Lösningsförslaget i den länakde sidan är en GeoGebra som ska vara underlag för en diskussion på lektionen.
[[Lösningsförslag till NP-uppgift fr vt 1999]]
}}
 
=== Prova en svårlöslig integral med digitala verktyg ===
 
Kan du lösa denna integral analytiskt?
 
<math> \int {\sin(x^2)dx} </math>
 
Det är svårt att finna en primitiv funktion, eller hur?
 
Prova att lösa den med WolframAlpha och GeoGebra.
 
Läs mer [http://reference.wolfram.com/language/tutorial/IntegralsThatCanAndCannotBeDone.html här].
 
=== Formativ lektionskontroll ===
 
[[Fil:NP E 1996 Integraluppgift med bromssträcka.png|340px|miniatyr|höger|Alla gör denna uppgift för hand så jag kan se att de förstår detta.]]
 
* Om allt gått väl kan alla nu lösa denna uppgift. I så fall kan vi gå vidare.
* Om det är många som inte kan detta måste vi repetera. Vi måste också diskutera, utvärdera och komma överens om hur vi ska göra för att lära oss detta.
* Om de flesta men inte alla kan detta kommer vi att gå vidare i klassen. De som ännu inte klarar detta får diskutera med mig hur de kan göra för att komma vidare.
 
[[Lösningsförslag till NP E 1996 Integraluppgift]]
{{clear}}
 
== Sannolikheter med integraler ==
 
{{#ev:youtube | loLj1eLC6GI | 340 | left |Sannolikheter och integraler.  Tomas Sverinn, standard Youtubelicens.}}
{{#ev:youtube | WUlE9_5lAls | 340 | right |Ma4 Normalfördelningen.  Polhemsjocke, standard Youtubelicens.}}
{{#ev:youtube | 7epyyBgiBbY | 340 | right |Täthetsfunktioner.  MDAGlobalaGy, Creative Commons.}}
[[Fil:Standard deviation diagram.svg|frame|left|Normalfördelningen]]
 
<html>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/35876/width/1382/height/574/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="1382px" height="574px" style="border:0px;"> </iframe>
</html>
 
=== Exempel 1 i boken ===
 
<html>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/666167/width/909/height/503/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="909px" height="503px" style="border:0px;"> </iframe>
</html>
 
=== Hemuppgift - Normalfördelning ===
[[Fil:D-kursprov-ht03-uppg10.png|600px | miniatyr|Är detta en normalförelning?]]
 
Lös uppgiften till höger.
 
Är det en normalfördelning och hur vet du det?
 
Använd datorn till att redovisa ditt svar.


Var beredd att presentera din lösning med projektor.
== [[Integralens värde och tillämpningar]] ==


GeoGebra-förslag till lösning - [[NP Ma D Normalfödelning]]
== [[Numerisk lösning av integraler]] ==


==== Bedömningsanvisning från NP ====
== Sannolikheter med integraler - [[Normalfördelningen]] ==


Redovisad godtagbar förklaring, t ex integralens värde anger den totala ökningen av antalet bin under 24 veckor
== [[Exponentialfördelningen]] ==
: http://www5.edusci.umu.se/np/np-prov/D-kursprov-ht03.pdf
{{clear}}


== Exponentialfördelningen ==
== Repetera integraler ==


{{lm4| Exponentialfördelningen |172-173}}
Det finns ett litet antal självrättande uppgifter på [http://www.matteboken.se/ovningsuppgifter Matteboken.se]

Nuvarande version från 15 november 2016 kl. 15.22


Förförståelsetest med NP-uppgifter

Följande uppgifter kommer från NP till den äldre kursen Matematik D. Tillstånd har inhämtats från Skolverket för dess publicering (under CC) på denna sida.

Ett kort test med uppgifter som testar förståelsen.

Fler uppgifter från nationella prov

Här är en samling uppgifter med integraler från gamla nationella prov:

Du kan printa denna! Integraluppg. fr NP


Formelsamling på WikiBooks

Derivator och primitiva funktioner i en behändig formelsamling:

Integral och area

Integralens värde och tillämpningar

Numerisk lösning av integraler

Sannolikheter med integraler - Normalfördelningen

Exponentialfördelningen

Repetera integraler

Det finns ett litet antal självrättande uppgifter på Matteboken.se