Bestämda integraler: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) (→Bevis) |
Hakan (diskussion | bidrag) |
||
(6 mellanliggande sidversioner av samma användare visas inte) | |||
Rad 149: | Rad 149: | ||
==Geometriskt bevis== | ==Geometriskt bevis== | ||
[[File:FTC_geometric.svg|500px|thumb|right|The area shaded in red stripes can be estimated as ''h'' times ''f''(''x''). Alternatively, if the function ''A''(''x'') were known, it could be computed exactly as {{nowrap|''A''(''x'' + ''h'') − ''A''(''x'').}} These two values are approximately equal, particularly for small ''h''.]] | [[File:FTC_geometric.svg|500px|thumb|right|The area shaded in red stripes can be estimated as ''h'' times ''f''(''x''). Alternatively, if the function ''A''(''x'') were known, it could be computed exactly as {{nowrap|''A''(''x'' + ''h'') − ''A''(''x'').}} These two values are approximately equal, particularly for small ''h''.]] | ||
Rad 175: | Rad 173: | ||
This implies {{nowrap|''f''(''x'') {{=}} ''A''′(''x'')}}. That is, the derivative of the area function ''A''(''x'') exists and is the original function ''f''(''x''); so, the area function is simply an antiderivative of the original function. Computing the derivative of a function and “finding the area” under its curve are "opposite" operations. This is the crux of the Fundamental Theorem of Calculus. | This implies {{nowrap|''f''(''x'') {{=}} ''A''′(''x'')}}. That is, the derivative of the area function ''A''(''x'') exists and is the original function ''f''(''x''); so, the area function is simply an antiderivative of the original function. Computing the derivative of a function and “finding the area” under its curve are "opposite" operations. This is the crux of the Fundamental Theorem of Calculus. | ||
''{{enwp | Fundamental_theorem_of_calculus}}'' | |||
Läs gärna vad {{svwp | Analysens_fundamentalsats}} även om det är på en hög nivå för det är så häftigt. | Läs gärna vad {{svwp | Analysens_fundamentalsats}} även om det är på en hög nivå för det är så häftigt. | ||
=== Det röda överskottet === | |||
För att göra beviset mer överskådligt ar vi lyft ut ett resonemang om det röda överskottet. Kan vi vara säkra på att det går mot noll då h går mot noll, vi dividerar ju med h? | |||
As ''h'' approaches 0 in the limit, the last fraction can be shown to go to zero. This is true because the area of the red portion of excess region is less than or equal to the area of the tiny black-bordered rectangle. More precisely, | |||
:<math>\left|f(x) - \frac{A(x+h) - A(x)}{h}\right| = \frac{|\text{Red Excess}|}{h} \le \frac{h(f(x+h_1) - f(x+h_2))}{h} = f(x+h_1) - f(x+h_2),</math> | |||
where <math>x+h_1</math> and <math>x+h_2</math> are points where <math>f</math> reaches its maximum and its minimum, respectively, in the interval <math>[x, x + h]</math>. | |||
By the continuity of <math>f</math>, the latter expression tends to zero as <math>h</math> does. Therefore, the left-hand side tends to zero as <math>h</math> does, which implies | |||
:<math>f(x) = \lim_{h\to 0}\frac{A(x+h)-A(x)}{h}.</math> | |||
=== Anteckningar från lektionen === | === Anteckningar från lektionen === |