Addition och subtraktion av vektorer: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
Hakan (diskussion | bidrag) |
||
(44 mellanliggande sidversioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | |||
= Teori = | = Teori = | ||
Rad 18: | Rad 19: | ||
''Texten från matteboken.se'' | ''Texten från matteboken.se'' | ||
=== Addition av vektorer === | === Addition av vektorer === | ||
Rad 42: | Rad 34: | ||
</html> | </html> | ||
==== | ==== Addition av vektorer med komposanterna utritade ==== | ||
<html> | |||
<iframe scrolling="no" title="Addition med komposanter" src="https://www.geogebra.org/material/iframe/id/frfshfvm/width/686/height/360/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="686px" height="360px" style="border:0px;"> </iframe> | |||
</html> | |||
=== Subtraktion av vektorer === | === Subtraktion av vektorer === | ||
Rad 76: | Rad 70: | ||
=== Vektorer och trigonometri=== | === Vektorer och trigonometri=== | ||
<html> | |||
<iframe scrolling="no" title="Vektor trigonometri" src="https://www.geogebra.org/material/iframe/id/zkhqy4j4/width/600/height/360/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="600px" height="360px" align="left" style="border:0px;"> </iframe> | |||
</html> | |||
{{Digital |Denna GeoGebra förklarar [ | {{Digital |Denna GeoGebra förklarar [https://www.geogebra.org/m/vY5t5c3b vektorer och trigonometri] mm.}} | ||
{{defruta| | {{defruta| | ||
En vektor <math>\mathbf{ | En vektor <math>\mathbf{u} </math> (från origo) i ett koordinatsystem och vinkel v mot x-axeln kan delas upp i komposanter på x-axeln och y-axeln. | ||
: <math>\mathbf{u}_x = \mathbf{u} ~cos(v) </math> | |||
: <math>\mathbf{u}_y = \mathbf{u} ~sin(v) </math> | |||
}} | |||
== Beräkningar med vektorer i koordinatform == | |||
<html> | |||
<iframe scrolling="no" title="komposanter och enhetsvektorer" src="https://www.geogebra.org/material/iframe/id/fbqghpbd/width/600/height/600/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="600px" height="600px" align="right" style="border:0px;"> </iframe> | |||
</html> | |||
En vektor <math>\mathbf{u}</math> kan skrivas med hjälp av komposanterna utefter koordinatsystemets axlar och även uttryckas med hjälp av enhetsvektorerna. Därefter kan vi skriva vektorn på koordinatform. De räkneregler som gäller för vektorer gäller både grafiskt och om vi utför dem på koordinaterna. | |||
<math>\mathbf{ u} = \mathbf{ u_x} + \mathbf{u_y} = u_x\mathbf{ e}_x + u_y{\mathbf e}_y = (u_x, u_y)</math> | |||
=== Addition === | |||
<math>\mathbf{u}~+~\mathbf{v} = (u_x, u_y) + (v_x, v_y) = (u_x + v_x, u_y + v_y) </math> | |||
=== Subtraktion=== | |||
<math>\mathbf{u}~ - ~\mathbf{v} = (u_x, u_y) - (v_x, v_y) = (u_x - v_x, u_y - v_y) </math> | |||
=== Multiplikation med skalär === | |||
<math>n \cdot \mathbf{u}~ = n \cdot (u_x, u_y) = (n \cdot u_x, n \cdot u_y) </math> | |||
{{clear}} | |||
= Exempel = | |||
{{uppgfacit| | |||
[[Fil:Vektor 2u-3v.JPG|300px|höger]] | |||
Konstruera vektorn <math> 2 \overline{u} - 3 \overline{v} = </math> | |||
''Klicka för att förstora bilden.'' | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
<br /> | |||
| | |||
[[Fil:2u-3v skapad.JPG|300px|höger]] | |||
Man kan lösa uppgiften på tre sätt: | |||
1) Rita vektorerna i koordinatsystemet. Se på bilden till höger (den går att förstora). | |||
2) Räkna fram vektorerna: | |||
: <math> \overline{u} = (1,3) </math> och <math> \overline{v} = (2,-1) </math> | |||
: <math>\ | Då är: | ||
: <math> 2 \overline{u} - 3 \overline{v}= 2 \cdot (1,3) - 3 \cdot (2,-1) = (2 \cdot 1 - 3 \cdot 2, 2 \cdot 3 - 3\cdot (-1) = (-4, 9)</math> | |||
3) Det finns en GeoGebra med [https://www.geogebra.org/graphing/hg5nd4af konstruktionen 2u - 3v]. GeoGebra är oerhört kraftfullt. Du kan rita vektorerna eller skriva in deras koordinater. Sedan matar du in 2u - 3v. Klart! | |||
}} | }} | ||
= | = Aktiviteter = | ||
== Geogebraövning == | |||
: | <html> | ||
<iframe scrolling="no" title="" src="https://www.geogebra.org/material/iframe/id/f85CD2ja/width/838/height/450/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="838px" height="450px" style="border:0px;"> </iframe> | |||
</html> | |||
=== GeoGebra med tillämpning i fysik === | |||
Här har vi fällt in en GGB som är lite för stor. | |||
{{Lista | | |||
Du kan behöva trycka ctrl- för att se hela GGB:n. | |||
<html> | |||
<iframe scrolling="no" title="" src="https://www.geogebra.org/material/iframe/id/eB7sbbUc/width/1417/height/685/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1417px" height="685px" style="border:0px;"> </iframe> | |||
</html> | |||
}} | |||
=== Tillämpningar av vektorer (och trigonometri) === | === Tillämpningar av vektorer (och trigonometri) === | ||
Rad 97: | Rad 164: | ||
: [[Kaströrelse]] | : [[Kaströrelse]] | ||
= GeoGebra Addition = | |||
https://www.geogebra.org/m/Cy8bxaKS | |||
Hitta en GGB med avdrift för ett plan eller en båt | |||
Länk till worksheet: https://www.geogebra.org/m/ty53wFpP | |||
<html> | |||
<iframe scrolling="no" src="https://www.geogebratube.org/material/iframe/id/92762/width/973/height/354/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5" width="973px" height="354px" style="border:0px;"> </iframe> | |||
</html> | |||
<br> | |||
Ovanstående GGB är skapad av Håkan Elderstig fria att använda enligt Creative Commons. Den finns att laddas ner från [http://www.geogebratube.org/material/show/id/2368 GeoGebratube]. | |||
<br> | |||
= Uppgifter = | |||
=== Uppgift 1 === | |||
Rita ut och beräkna längden av vektorn <math>\mathbf{w} = 2 \mathbf{u} - 3 \mathbf{v} </math> om <math>\mathbf{u} = (4, 3) </math> och <math>\mathbf{v}</math> är vektorn som börjar i punkten <math> (3, 2)</math> och slutar i punkten <math>(4, 5)</math>. | |||
=== Uppgift 2 === | |||
Bestäm enhetsvektorn för <math>\mathbf{w} = \mathbf{u} - 3 \mathbf{v} </math> om <math>\mathbf{u} = (-1, 4) </math> och <math>\mathbf{v} = (0, 2) </math>. | |||
=== Uppgift 3 === | |||
Dela upp <math>\mathbf{w} = 5 \mathbf{u} - 2 \mathbf{v} </math> i dess x- och y-komposanter om <math>\mathbf{u} = (2, 5) </math> och <math>\mathbf{v} = (-4, 1) </math> | |||
=== Uppgift 4 === | |||
En båt åker för motor med kurs rakt norrut med farten 7 knop men en kraftig vind från väster ger en avdrift med hastigheten 2 knop. Vilken verklig kurs har båten? | |||
=== Ett uppgiftsblad som repetition === | |||
Här finns uppgifter: [[Media:Veckodiagnos_7_version2.pdf|Diagnos 7 finns här]] med repetition av trigonomatri samt nummer 7 och 8 om vektoorer. | |||
= Lär mer = | = Lär mer = | ||
Rad 103: | Rad 207: | ||
|- | |- | ||
| {{sway | [https://sway.com/VeZju3XWfiXyeriC?ref{{=}}Link Operationer med vektor]}}<br /> | | {{sway | [https://sway.com/VeZju3XWfiXyeriC?ref{{=}}Link Operationer med vektor]}}<br /> | ||
{{ | {{ wplink| [https://sv.wikipedia.org/wiki/Vektor Vektorer]}}<br /> | ||
{{matteboken |[https://www.matteboken.se/lektioner/matte-1/geometri/rakna-med-vektorer Räkna med vektorer] }}<br /> | {{matteboken |[https://www.matteboken.se/lektioner/matte-1/geometri/rakna-med-vektorer Räkna med vektorer] }}<br /> | ||
|} | |} | ||
=== GeoGebra - Addition av vektorer === | |||
En [https://www.geogebra.org/m/tsBer5An dynamisk GeoGebra med förklaringar och film]. | |||
=== Fördjupning === | === Fördjupning === |