Begrepp inom algebran: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
 
(10 mellanliggande sidversioner av 2 användare visas inte)
Rad 10: Rad 10:


=== Algebraiska regler ===
=== Algebraiska regler ===
Den här texten kommer ursprungligen från Wikipedia och är relativt avancerad när det gäller det matematiska språket. Stringens är viktigt och det är nödvändigt att du vänjer dig vid att läsa liknande texter för att kunna lära dig mer från exempelvis Wikipedia eller läroböcker på mer avancerad nivå.


{{defruta | '''Samma regler inom aritmetiken som i algebran'''<br />
{{defruta | '''Samma regler inom aritmetiken som i algebran'''<br />
Rad 49: Rad 51:
}}
}}


= Aktivitet =
= Aktivitet med begrepp =


=== Algebraiska begrepp ===
=== Algebraiska begrepp ===
Rad 64: Rad 66:
! Ord !! Betydelse
! Ord !! Betydelse
|-
|-
| bestäm || Räkna ut värdet av
| bestäm || fastställa värdet av
|-
| beräkna || räkna ut värdet av
|-
|-
| beräkna || Räkna ut värdet av
| bryt ut|| den distributiva lagen "baklänges"
|-
|-
| bryt ut|| Den distributiva lagen "baklänges"
| definitionsmängd || Det finns endast vissa värden på x där en funktion gäller - eller som det heter, där funktionen är definierad. Man brukar kalla alla tillåtna x-värden för funktionens definitionsmängd; detta är den mängd av värden på den oberoende variabeln, i detta fall x, som är tillåtna.
|-
|-
| grad|| Vinkel enheten
| grad|| vinkelenhet
|-
|-
| ekvation || två uttryck med ett likhetstecken mellan
| ekvation || två uttryck med ett likhetstecken mellan
|-
| element || Varje ingående tal i en mängd
|-
|-
| faktorisera || dela upp i faktorer, oftast primtalsfaktorer
| faktorisera || dela upp i faktorer, oftast primtalsfaktorer
Rad 86: Rad 88:
| förenkla || minska komplexiteten i ett uttryck genom att slå ihop termer, förkorta, mm
| förenkla || minska komplexiteten i ett uttryck genom att slå ihop termer, förkorta, mm
|-
|-
| förkorta || plocka bort lika dana faktorer på varsin sida av ett bråkstreck eller likhetstecken
| förkorta || plocka bort likadana faktorer på varsin sida av ett bråkstreck eller likhetstecken
|-
|-
| höger led || termerna till höger om likhetstecknet i en ekvation
| höger led || termerna till höger om likhetstecknet i en ekvation
|-
|-
| koefficient|| Det tal som är direkt ansluten till en variabel, exempel vis "5"i "5x"
| koefficient|| det tal som är direkt ansluten till en variabel, exempel vis "5"i "5x"
|-
|-
| konstant || en bokstav betecknar ett tal som inte varierar, exempelvis <math> \pi </math>
| konstant || en bokstav betecknar ett tal som inte varierar, exempelvis <math> \pi </math>
Rad 98: Rad 100:
| modell|| en problemformulering i ett verkligt problem uttryckt med matematik
| modell|| en problemformulering i ett verkligt problem uttryckt med matematik
|-
|-
| mängd || en mängd är en samling av objekt. De objekt som ingår i en mängd kallas mängdens element.
| operator || tecken som visar vilket räknesätt som ska användas, exempelvis <math> +, -, *, /</math>
|-
|-
| operator || tecken som visar vilket räknesätt som ska användas, exempelvis <math> +, -, *, /</math>
| rot|| lösning till ekvation
|-
|-
| upphöjt|| någonting multiplicerat med sig själv ett visst antal gånger
| upphöjt|| någonting multiplicerat med sig själv ett visst antal gånger
Rad 109: Rad 111:
|-
|-
| vänster led || termerna till vänster om likhetstecknet i en ekvation
| vänster led || termerna till vänster om likhetstecknet i en ekvation
|-
| värdemängd || Varje tillåtet värde på x-axeln motsvarar ett specifikt värde på y-axeln. Alla möjliga värden på y kallas för funktionens värdemängd - värdemängden är de värden som funktionen kan anta.
|-
|-
| värdet av || att sätta in siffror i ett uttryck och räkna ut vad det är
| värdet av || att sätta in siffror i ett uttryck och räkna ut vad det är
|}
|}


=== Finn regeln ===
= Korsord =
 
Kopiera texten till din dator och skriv rätt regel på strecket.
 
{| class="wikitable"
|-
! Förenkling !! Skriv regeln
|-
| <math>{(x^3)}^4 = x^{12}</math> || _______________________
|-
| <math>x^0 = 1 </math> || _______________________
|-
| 2 + 3 * 4 = 14 || _______________________
|-
| <math>{ \left( {x \over y }\right)^7} = {x^7 \over y^7}</math> || _______________________
|-
| <math>x^2 \cdot x^5 = x^{7}</math> || _______________________
|-
| <math>{(x \cdot y)}^{19} = x^{19} \cdot y^{19} </math> || _______________________
|-
| <math>{x^5 \over x^3} = x^{2}</math> || _______________________
 
|}
 
= Pund med Python =
 
= Programmering =
 
[[Kategori:Python]] [[Kategori:Ma1c]] [[Kategori:Aritmetik]]  [[Kategori:Årskurs 7-9]]
{{python|[[Python|Python-hjälp]] och [https://wikiskola.se/index.php?title{{=}}Kategori:Python Fler uppgifter]}}
{{malruta| '''Använd uttryck i ett Pythonprogram.'''
 
Målet är att du ska se hur uttrycket används i programmet och hur du kan modifiera uttrycket för att ändra vad programmet gör. Du kan modifiera programmets matematiska del utan att kunna särskilt mycket kod.
}}
 
== Omvandla pund till sek ==
 
{{uppgruta|'''Omvandla pund till sek'''
 
Följande program omvandlar 21 brittiska pund (GBP) til svenska kronor (SEK).
 
# På vilket sätt kan man ändra den befintliga koden för att omvandla 1000 SEK till GBP?
# På vilket sätt kan man omvandla 50 euro (EUR) till SEK?
# På vilket sätt kan man omvandla valfri summa EUR till SEK?
}}
 
== Koden ==
 
<pre>
# vi omvandlar 21 GBP till SEK
antalgbp = 21
 
# växelkurs
gbpsek = 11.6


print(antalgbp, "Brittiska pund är")
<pdf>Fil:Korsord_nc.pdf</pdf>
sek = antalgbp * gbpsek
helasek = int (sek)


print("ungefär", helasek, "svenska kronor")
= Korsord 2 =


# Resultatet visas så länge vi vill
<pdf>Fil:Korsord_information_gap_nc.pdf</pdf>
input ("Tryck Enter för att avsluta programmet")
</pre>


= Korsord 3=


Uppgiften är inspirerad av Attila Szabo, Utbildningsförvaltningen Stockholm.
<pdf>Fil:Korsord_information_gap.pdf</pdf>


= Uppgifter  =
= Uppgifter  =

Nuvarande version från 24 september 2019 kl. 09.33

[redigera]
Mål för undervisningen Algebraiska uttryck

Vi går igenom alla regler som används inom aritmetiken och algebran. Du kommer att lära dig flera nya begrepp inom algebran. Du kommer att öva dig i att förenkla algebraiska uttryck med hjälp av reglerna.


Algebraiska regler

Den här texten kommer ursprungligen från Wikipedia och är relativt avancerad när det gäller det matematiska språket. Stringens är viktigt och det är nödvändigt att du vänjer dig vid att läsa liknande texter för att kunna lära dig mer från exempelvis Wikipedia eller läroböcker på mer avancerad nivå.

Definition
Samma regler inom aritmetiken som i algebran
Kommutativa lagen.

Operatorn [math]\displaystyle{ \star }[/math] på en mängd [math]\displaystyle{ S }[/math] är kommutativ om och endast om det för alla element [math]\displaystyle{ x }[/math] och : [math]\displaystyle{ y }[/math] i [math]\displaystyle{ S }[/math] gäller att

[math]\displaystyle{ x \star y = y \star x }[/math].
Associativa lagen.

En binär operator * på en mängd S kallas associativ om det för alla x, y och z i S gäller att

(x * y) * z = x * (y * z).

Om så är fallet kan man använda beteckningen x * y * z, eftersom det inte spelar någon roll i vilken ordning operationerna utförs.

Distributiva lagen.

En operator, [math]\displaystyle{ \,* }[/math], sägs vara distributiv med avseende på en annan operator, +, om det för alla x, y och z i en mängd S gäller att

[math]\displaystyle{ \, x * (y + z) = (x * y) + (x * z) }[/math]
och
[math]\displaystyle{ \, (y + z) * x = (y * x) + (z * x) }[/math]
Prioriteringsreglerna
Utför beräkningar inom parenteser först, därefter multiplikationer och divvisioner och sist additioner och subtraktioner.
Potenslagarna

Ur definitionen av potenser med positiva tal som heltalsexponent, kan potenslagarna härledas:

  • [math]\displaystyle{ {(x \cdot y)}^n = x^n \cdot y^n }[/math]
  • [math]\displaystyle{ { \left( {x \over y }\right)^m} = {x^m \over y^m} }[/math]
  • [math]\displaystyle{ x^m \cdot x^n = x^{m+n} }[/math]
  • [math]\displaystyle{ {x^m \over x^n} = x^{m-n}, (x \ne 0) }[/math]
  • [math]\displaystyle{ {(x^m)}^n = x^{m \cdot n} }[/math]

Utgående från dessa lagar definieras sedan utvidgade betydelser av potens.



[redigera]

Algebraiska begrepp

Uppgift
Googla något av begreppen i listan och lär dig mer.

Om du hittar något begrepp som inte finns på listan så loggar du in på wikiskola och skriver dit det i listan tillsammans med en förklaring.


Lär dig dessa begrepp och matematikord

Ord Betydelse
bestäm fastställa värdet av
beräkna räkna ut värdet av
bryt ut den distributiva lagen "baklänges"
definitionsmängd Det finns endast vissa värden på x där en funktion gäller - eller som det heter, där funktionen är definierad. Man brukar kalla alla tillåtna x-värden för funktionens definitionsmängd; detta är den mängd av värden på den oberoende variabeln, i detta fall x, som är tillåtna.
grad vinkelenhet
ekvation två uttryck med ett likhetstecken mellan
faktorisera dela upp i faktorer, oftast primtalsfaktorer
flytta över förändra en formel eller ett uttryck genom att utföra samma operation på båda sidor om likhetstecknet
formel en ensam variabel i vänster led och ett uttryck i höger led
funktion ett samband mellan två eller flera variabler, ex [math]\displaystyle{ y = 3 x - 2 }[/math]
förenkla minska komplexiteten i ett uttryck genom att slå ihop termer, förkorta, mm
förkorta plocka bort likadana faktorer på varsin sida av ett bråkstreck eller likhetstecken
höger led termerna till höger om likhetstecknet i en ekvation
koefficient det tal som är direkt ansluten till en variabel, exempel vis "5"i "5x"
konstant en bokstav betecknar ett tal som inte varierar, exempelvis [math]\displaystyle{ \pi }[/math]
lös ut se till att en variabel hamnar ensam till vänster i en ekvation
modell en problemformulering i ett verkligt problem uttryckt med matematik
operator tecken som visar vilket räknesätt som ska användas, exempelvis [math]\displaystyle{ +, -, *, / }[/math]
rot lösning till ekvation
upphöjt någonting multiplicerat med sig själv ett visst antal gånger
uttryck en kombination av tal, variabler och operatorer
variabel en bokstav som i ett uttryck, formel eller ekvation betecknar ett värde som kan variera
vänster led termerna till vänster om likhetstecknet i en ekvation
värdemängd Varje tillåtet värde på x-axeln motsvarar ett specifikt värde på y-axeln. Alla möjliga värden på y kallas för funktionens värdemängd - värdemängden är de värden som funktionen kan anta.
värdet av att sätta in siffror i ett uttryck och räkna ut vad det är
[redigera]

Öva förenkling

Demonstrationsexempel för förenkling:

[math]\displaystyle{ 5x - 2y - x +3 }[/math]
[math]\displaystyle{ 3x - 2y^2 - xy + 2y^2 }[/math]
[math]\displaystyle{ \frac{10^9 + 10^7}{10^7 + 3*10^7} }[/math]
[math]\displaystyle{ \frac{6x^2 - 2xy}{ - 4x +8x^2 } }[/math]

Lär mer

Uttryck, formler och variabler. Förenkla algebraiska uttryck.

Swayen till detta avsnitt: Begrepp inom algebra




Matematik 1a 1b 1c A algebra uttryck formler variabler
Matematik 1a 1b 1c A Förenkla algebraiska uttryck

Öva själv

Förenkla avancerat exempel.

Matematik 1c A Algebra förenkla avancerat exempel

Öva själv

Exit ticket