|
|
(16 mellanliggande sidversioner av samma användare visas inte) |
Rad 16: |
Rad 16: |
| = Andragradsfunktioner = | | = Andragradsfunktioner = |
|
| |
|
| <html><iframe src="http://phet.colorado.edu/sims/equation-grapher/equation-grapher_en.html" width="800" height="600"></iframe></html>
| | == [[Parabelns ekvation]] == |
|
| |
|
| == Fyra sätt att beskriva andragradaren ==
| |
|
| |
|
| Vi kommer att arbeta med fyra representationer, fyra sätt att beskriva andragradsfunktionen. Alla sätt beskrivs mer ingående senare men här kommer en snabb sammanställning i några rader och eventuell bild.
| | == [[Fyra sätt att beskriva andragradaren]] == |
| {{clear}}
| |
| ==== Generell algebraisk form ====
| |
|
| |
|
| Andragradsfunktionen på allmänn form <math>f(x) = ax^2 + bx + c</math>.
| | == [[Andragradsfunktionens graf]] == |
|
| |
|
| '''Exempel''': Andragradsfunktionen <math>f(x) = 2x^2 - 4</math>.
| | == [[Testa dina kunskaper om andragradsfunktioner]] == |
| {{clear}}
| |
| | |
| ==== Vertex och nollställe ==== | |
| [[Fil:Andragradare_nollställen.ggb.png|thumb]]
| |
| Varje parabel har en extrempunkt där den antar sitt högsta eller lägsta värde. Dessutom kan den ha ett eller två nollställen men det är inte alltid så.
| |
| | |
| [[Funktioner_2C#Begrepp_och_egenskaper_hos_andragradsfunktionern|Läs mer]]
| |
| {{clear}}
| |
| | |
| ==== Fokus och styrlinje ====
| |
| [[Fil:Andragradare_styrlinnje.ggb.png|thumb]]
| |
| | |
| Andragradsfunktionen beskrivs och ritas upp utifrån en linje och en punkt.
| |
| | |
| [[Funktioner_2C#GeoGebra_som_visar_samma_avst.C3.A5nd|Läs mer]]
| |
| {{clear}}
| |
| | |
| ==== Värdetabell ====
| |
| [[Fil:Värdetabell_exempel1.png|right]]
| |
| Som med alla funktioner kan man göra en värdetabell med x- och y-värden. När dessa talpar ritas in i ett koordinatsystem får man funktionens graf.
| |
| | |
| [[Funktioner_2C#Hur_ritar_man_en_parabel_om_man_vet_funktionen.3F|Läs mer]]
| |
| {{clear}}
| |
| | |
| == Parabelns ekvation ==
| |
| [[File:Parábola con foco y directriz.svg|thumb|Avståndet till styrlinjen är lika med avståndet till fokus]]
| |
| | |
| '''Definitioner'''
| |
| Brännpunkt kallas också fokus
| |
|
| |
| Styrlinje är en linje som används för att konstruera parabeln
| |
| {{clear}}
| |
| | |
| === GeoGebra som visar samma avstånd ===
| |
| <ggb_applet width="918" height="406" version="4.0" ggbBase64="UEsDBBQACAAIAIqJikAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACKiYpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVY247bRhJ9dr6iwWdL6jtJQ+NAk4WxBiZxgPEuFvvWJHuk9lAkl6Q0kpHfyZfsj211N0lR0lieSxJgg4z7Vl3VVadu1PzH3TpHW103piyuAjLFAdJFWmamWF4Fm/ZuEgU/vv9hvtTlUie1QndlvVbtVcAtpcmugkSFklCeTaIklhMeSzGJYhzBUogM8zAVcRYgtGvMu6L8Ra11U6lU36YrvVY3ZapaJ3jVttW72ezh4WHai5qW9XK2XCbTXQMM4JlFcxV0k3fA7ujSA3PkFGMy+9fPN579xBRNq4pUB8iqsDHvf3gzfzBFVj6gB5O1q6sgpjJAK22WK9BJcBGgmSWqwCCVTluz1Q1cHS2dzu26ChyZKuz5Gz9D+aBOgDKzNZmurwI8pYwQTAQhURhjMFAUoLI2umg7YtIJnfXs5lujHzxfO3MieYDasswTZVmi335DFFOM3tqB+IHCIKU/wn4PMz9QP3A/CE/D/XXuSbmn4Z6GswBtTWOSXF8FdypvwISmuKsBvmHdtPtcu/d0Gwf1yVvQqTFfgZhh8BNvc9jH+K39k/DH7cHsWEkyktrWm2cK7UXKOH66SPoakawXSQk/F0nFN7SUF4zr3/AUNYkYWRZEuf/d35lERp8h0a9fJ1Dyv0TF+ayPlHkXHKhZWdoOyVavGxsuLEYitl5PkIDQkCE4uUAkhiGkCIIBEYG4gCWJkLRjiFgIBxwxFCFLRxhysSEi+IeHjplEApjZ3RBCEhEQxJFgiLiQ4ggCCbmwhBClDCiEQAIuWfGEWhZMIi5hxSLE4Y02IkMChAwuwhrEU8QIYvYyCRGVSFp+hNtIl5F9OrCkSGIkiWUIQQ0B7YMZ6CPErDayM5cpqk17ZKJ0nfXTtqwGLIAa0tEh6/n0dJQU38xzlegc6sStRRKhrcptRDhBd2XRoh5E7veWtapWJm1uddvCrQZ9UVt1o1q9+wDUTS/b0aZl0fxal+1PZb5ZFw1CaZnj4c1lTkZzOrwaFmx0wMcHYnQgR/PwUbklnKBNo0F+WTc9ucqyj5bikBrAkp+KfH9da3VfleZYjfnMlZy53qS5yYwq/gnOaqVYu6C+Arls1VcgFon+IWWd3e4b8GC0+7euS8gxsZyyWESYS0FkFIUB2ncnAqoxDSEJhYJyyuxRkyobewJPGWc45hxTyQiH0No/fkTjDie9HRBSOz0ov6xtYHeK28XH5rrMD1tO/Z9U1W5q1ztAiNZWqUWxzLVzERfYUJjT+6Tc3XrfYJ7X532l7RX3gGTpzI5qqxlU5GU3Jn50NPZlAxV2NNhR4N7ZTDack5g6CjcmfnRU4L3+aZ2mpFeT4F6MaVxCw8FR2DjXt2V+U5j2pl+0Jr0/aGrpf9msEz040DFL8gexnM9OHGx+r+tC550/A5KbctP48By5eqZTs4alP+gMoixY/4AH+N1ML2vdvzt3XZk3lzvFY1c923asPtTl+mOx/QyecPKA+ax/5bxJa1NZh0MJ1IB7ffCpzDQKSkg2vmcDEFRPbakA87TWNBCam3ZV1q7xgowCo427XK+hy0Ktcy64Z9LBzKnr36w9UZl8gaR2AsPIUHB+8EfMj3wNqbxaKdvkdVrnaq/rIzs4hj+X2al1wPhOBQjxyoNbae3dou2iAVXAzgXT6DkHn20hm95Dxwi+IEaX7OTvJsu0q6Q+pM1SF1vQEpIZtOLYPxjtcdfxf+0nO0isEzfbk47oK/FnjhG8uTY7tAD6CTS2AVr0ZAva31ywfov3EzFiof9T+Oc33q31rspNatrOlT1mZ+hZrQdw4H4NG1/0d0A8BN0Yw3G2IIK9AEPyOIZ4+nQUXdA0aNcj0QMBLjY84yVAv8i4LnUPVvtQ3m+aV1vWZew/1bLkqZZlnWUHF3T62gLkhYrx7kkeGxstLddrVWSocF3sr85oh65KYZtVvE02bb+z8Ey6q9+x/OJFVu9rJMH0j85KL7M7n1L4T2ApcRiFPCQOBTqlEQ3he0hyKuBz1X6TXAAlfhwUehmUv5nug/8YlwWYhPSefQqR2jbtf38vssVw/G28is1a16MycnLXfburfNM9lp+ozC+HzBg4clnPW720+89S87JmTcdx0OzVGeAlfkhPfQmqTEhCKuKYCXClOLS/noA3TR5xMutNdCqlDAWJI8ok5YRdyKX0ebnUrA+51Fk2tzHwsWihG9OuHTlvsu61rmxv+6n4XKuisT+eeZpR8/YNiD/V0NEsy0LlN7b2PYr0bgHN5BnSyWWkj0ppcg5z/zl+sRF6LdD4DGjSZWvcZetzgP8UJL8NwIDsie0P3YfDIDmz//Vzcv71i+JM+jbUDokfXo/A42l7Qr9TPdmLqufFBHZ9ZtLseckr+wuT16e7u0a31oCMe4sR+rTcdloe2JH/T0g0xRGNMAVEqIxh/n+Uy2bjzzT3U0j3q/77/wFQSwcIg6ng8SEHAAByGAAAUEsBAhQAFAAIAAgAiomKQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACKiYpAg6ng8SEHAAByGAAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAALkHAAAAAA==" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
| |
| | |
| === Parabelns egenskaper i GeoGebra 1 ===
| |
| | |
| Du kan lära dig litet om hur parabeln fungerar och vad den har för egenskaper med denna övning:
| |
| | |
| '''Datorövning:''' [http://www.malinc.se/math/functions/parabolasv.php Malin C GGB-övning] {{clear}}
| |
| | |
| === GeoGebra med styrlinje och fokus ===
| |
| | |
| <ggb_applet width="792" height="319" version="4.0" ggbBase64="UEsDBBQACAAIACI+i0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAiPotAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1YW2/bNhR+bn/FgZ42ILZFSZTswm6RFihWIO0KpBuGvVESY7ORRE2kbTnoj98hKclyLkWSDkOBurwdnst3blSWb9qygB1vlJDVyiNT3wNeZTIX1XrlbfXVZO69ef1yueZyzdOGwZVsSqZXXmQoRb7yeHRFgyiYT/J4wScRZYtJms8Xk5DmPA+veJgmmQfQKvGqkp9YyVXNMn6ZbXjJLmTGtBW80bp+NZvt9/tpL2oqm/VsvU6nrco9QDUrtfK6yStkd3JpH1rywPfJ7K+PF479RFRKsyrjHhgTtuL1yxfLvahyuYe9yPVm5c19NGPDxXpjbKKRBzNDVCMgNc+02HGFV0dLa7Mua8+Sscqcv3AzKAZzPMjFTuS8WXn+NKAeyEbwSnenpJMy6+8vd4LvHSMzszJQFS1lkTLDA759g8APfDgzA3FDgEMcuyPf7fmhGwI3RG6gjiZy1yNHGjmayNFEoQc7oURa8JV3xQqFmInqqkF/DWulDwW3+nQbR3vJGdqkxA0ShwZRBzLu+/6Z+cX4i8zB7NRIMpKqm+0ThfYi6Tx5vMjgR0SGvcjgPisD+oCV8XfAdTo8xkxCRzJRlP1nf3ckhsETJLr1jwmMo//FxOWsz5RllxygNoa286TmpTLpEi6ALkzUE6CYGnGCQU6BLHBIAsBkAEIhorgkc4jNmECY4EEEIczB0JEQbG7QOf4XJZZZDBSZmd0EUxIICoqAhkBsSkWAiQQ2LTFFgxApKAWKl4x4EhgWYQxRjKtwDhHqaDIyIUgY4kVco/gAQgKhuUwSCGKIDT8SmUyP50Z1ZBlA7ENMDENMakxol8xIP4fQWBN3cImq3uoTiLIy76da1oMvkBrL0bHMufJ0UgVfLAuW8gIbw6XxJMCOFSYjrKArWWnonRi4vXXD6o3I1CXXGm8p+Mp27IJp3r5HatXLtrSZrNTnRup3stiWlQLIZOEPOsuCjObBoDUuwtFBND6go4N4NE/ulSvxBLaKo3zZqJ6c5fkHQ3EsDYjk71VxeNtwdl1LcWrGcmZ7zJJvs0LkglV/YrAaKQYX6FuOrVZ9ywl90isim/zyoDCCof2bNxJxTOJpnERJTJM4ChYRptjBnQSUTsnCX5AwoYsEuy92GJUxk3shmYbEj+eLBY0jGuNFvPXAWSea7wYPsZYPxq8bk9id4WbxQb2VxXHLmv+O1Xrb2McC1sbGGHVerQtuQ8QmNnbi7DqV7aWLjdDx+nKoceU7BdK1hR0aaxkSdGPqRktjNBuofEvjWwq/DzaRD+dkEVgKO6ZutFQYvU61zlLSm0n8XoxQtqD53kna2NA3fX1bCX3RL7TIro+WGvpP2zLlQwCdsiT/Ecvl7FaALa95U/Gii2f05FZulUvPUajnPBMlLt1BBwgzzvoDFXC7OV83vNe7sM8wB5c99cehemfbsnrfyPJDtfuCkXBLgeWs13KpskbUJuAgxR5wzY8xlQvFsIXk43smAdH0zLQKhEcbaDA1t3ojG/vSwoqCo8m7gpf4ygJtg8v4ekCZ2feagRNk+hVr2i0vjHDC83sDjVCMXVbUG2YedZ3RBTvw5gQGy/CjzG+Dg9hbCzDDa8PAeLfm3MWF7tIBamRos+mkRiHeClonFg7dM/1m5U3IoMcQ2BpL7jU+KzFg6Iixmfwm8pzbduvy/p/KXVEu3nhbFyITuosxB+YdWKttyRuRDcjh1dyCi+ZuO6PDaeREPAz4MT8ewtsfoU0eiXZHpwrz9oZSVJZNyRA7bIksVdheNH58YJBXx48Pp1hXnvEhZ9DFG2Ey7/GmiZldiZYP3ROjT9xgtrETY+71Q/B9Pzw/Nh7vpfYeL5Ee1p/ASxPauYk+3U3zIS0I+fnd1NYNSjNsOozf4hd3i/x+MT46A5NPv/bsbI91r7NT/3YHA4sfdaPtt88tbscCZULKeMIUAFOghvpk9TVPgJNXo9u91UnGaGWyLFmVQ2W/Iz6zhqWycLXcPW2ZbwFkxJR4Z+FW9weZY9cxuYMhNpZRhmTP6xD46fxANjwRxGdVcLHm1Q51xTcrQOv3HcLvW0Q/aUnXLOBAOqIbMnIPBnYjWjjv6c97qvPApNU0wSfrOT61J24zstzQ1ef4yp4EfbW/3VBEeX9DmY1bun02d3/yef0vUEsHCPX7kV9KBgAAjxIAAFBLAQIUABQACAAIACI+i0BFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAIj6LQPX7kV9KBgAAjxIAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADiBgAAAAA=" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true"/>
| |
| | |
| === Övning - hitta funktionen om du vet fokus och styrlinje ===
| |
| [[Fil:Parabel_m_styrlinje_o_fokus.png|300px|right|Övningsuppgift: hitta funktionen]] | |
| | |
| Detta är en '''viktig uppgift'''. Se även Exemplet på sid 152 i Matematik 2C.
| |
| | |
| Den här uppgiften utgår ifrån att du vet styrlinjen och fokuspunkten men ska ta fram funktionen. Se figuren till höger.
| |
| | |
| # Börja med att markera '''en punkt (x,y)''' på grafen i första kvadranten.
| |
| # Skriv ett uttryck för avståndet '''från (x, y) till linjen'''.
| |
| # Skriv ett uttryck för avståndet '''från (x, y) fokus'''.
| |
| # Det gäller för en parabel att avståndet från (x, y) till fokus är samma som avståndet från (x, y) till linjen. Visa detta genom att sätta de två '''uttrycken lika'''.
| |
| # '''Lös ut y''' ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna så att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.
| |
| | |
| Nu är du klar. Ekvationen du fick beskriver parabeln.
| |
| | |
| == Andragradsfunktionens graf ==
| |
| | |
| {{:andragradsfunktionens graf}}
| |
| | |
| == Testa dina kunskaper om andragradsfunktioner ==
| |
| | |
| {{uppgruta|Gör denna diagnos på ekvationssystem
| |
| | |
| [[Media:Veckodiagnos_19.pdf| Veckodiagnos 19 om andragradsfunktioner ]]
| |
| }}
| |
|
| |
|
| == Digitala rutan == | | == Digitala rutan == |
Rad 105: |
Rad 31: |
| Gör den i GeoGebra. | | Gör den i GeoGebra. |
|
| |
|
| == Kvadratiska modeller == | | == [[Kvadratiska modeller]] == |
| [[File:Square root.svg|thumb|Square root]]
| |
|
| |
|
| Så här ser andragradsfunktionen ut på allmän form:
| | == Kortdiagnos 4 == |
|
| |
|
| y(x) = ax<sup>2</sup> + bx + c
| | {{print|[[Media:Kortdiagnos_4.pdf|Kortdiagnos4]]}} |
| | |
| c anger var grafen skär y-axeln. a gör bland annat parabeln smalare eller bredare. bx-termen ger en diagonal förflyttning av hela kurvan (något förenklat uttryckt).
| |
| | |
| === Exempel 1 ===
| |
| [[File:ParabolicWaterTrajectory.jpg|thumb|ParabolicWaterTrajectory]] | |
| | |
| Exempel 1 handlar om att man har en måttsatt bild och ska anpassa den allmänna funktionen y(x) = ax<sup>2</sup> + bx + c till dessa mått.
| |
| | |
| Här är det smart att placera origo symmetriskt i bilden och att kika på ställena där grafen skär x-axeln och där den skär y-axeln.
| |
| | |
| ==== Övning 1 - Skapa parabelns funktion utifrån en bild med mått ====
| |
| Anpassa den allmänna funktionen till vattenstrålen i bilden. Strålen når 2 m långt och är 1.5 m hög.
| |
| | |
| ==== Övning 2 - Skapa parabelns funktion utifrån vertex och nollställen ====
| |
| | |
| Detta är en '''viktig uppgift'''. Se även Exempel 1 på sid 161 i Matematik 2C.
| |
| | |
| Andragradsfunktionen kan skrivas y = ax2+bx+c på allmänn form:
| |
| | |
| Grafen går genom punkterna (-16, 0) och har vertex i (0,-14).
| |
| | |
| # Vilket är det andra nollstället?
| |
| # Rita grafen.
| |
| # Bestäm b.
| |
| # Bestäm c.
| |
| # Bestäm a.
| |
| # Skriv ett uttryck för funktionen.
| |
| {{clear}}
| |
| | |
| === Exempel 2 ===
| |
| | |
| Exempel 2 (s 162) i boken handlar om att titta på nollställena för en funktion för att hitta vertex mitt emellan nollställena och sätta in x-värdet och räkna ut y-värdet (högsta punkten i detta fall).
| |
| | |
| === Parabelns egenskaper i GeoGebra 2 ===
| |
| | |
| I Malins övning skriv kurvan på annan form (x-k)<sup>2</sup>, osv. Nyttigt men vi hinner inte göra den på lektionstid. Gör den gärna hemma!
| |
| | |
| Digitala rutan samt detta avsnitt sid 160-164 ersätts av en [http://www.malinc.se/math/functions/vertexformsv.php Övning i Geogebra på Vertex och faktorform av Malin C].
| |
|
| |
|
| '''Överkurs:''' [http://www.malinc.se/math/functions/otherconicssv.php Andra kägelsnitt] Av Malin C. Pröva själv att konsttruera med hjälp av mittpunktsnormaler.
| | == Utmaning == |
| {{clear}}
| |
|
| |
|
| === Överbliven provupgift (svår) ===
| | Klarar du denna övning? |
| [[File:Parabolic trajectory.svg|thumb|Parabolic trajectory]]
| |
|
| |
|
| Bilden visar en kastparabel.
| | <html> |
| | | <script type='text/javascript' src='http://demonstrations.wolfram.com/javascript/embed.js' ></script><script type='text/javascript'>var demoObj = new DEMOEMBED(); demoObj.run('FunctionIdentificationGame', '', '439', '682');</script><div id='DEMO_FunctionIdentificationGame'><a class='demonstrationHyperlink' href='http://demonstrations.wolfram.com/FunctionIdentificationGame/' target='_blank'>Function Identification Game</a> from the <a class='demonstrationHyperlink' href='http://demonstrations.wolfram.com/' target='_blank'>Wolfram Demonstrations Project</a> by Izidor Hafner</div> |
| Tänk dig att kastbanans högsta punkt är 35 m.
| | </html> |
| | |
| Längden på kastet är 110 m.
| |
| | |
| Utgå från formen för andragradsfunktionen
| |
| <math>y(x) = a\cdot x^2 + b \cdot x + c </math> | |
| | |
| Gör en matematisk modell av kastbanan.
| |
| | |
| [[Tips: Parabelns bana]]
| |
| | |
| {{print|[http://wikiskola.se/images/Kastparabel.png Uppgift kastparabel]}}
| |
| {{clear}}
| |
| | |
| == Kortdiagnos 4 == | |
| | |
| {{print|[[Media:Kortdiagnos_4.pdf|Kortdiagnos4]]}}
| |