Lektion 4 - Enhetscirkeln: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
 
(9 mellanliggande sidversioner av samma användare visas inte)
Rad 4: Rad 4:


{{#ev:youtube| P9ZWjEkHVrk |240|left|Enhetscirkeln intro}}{{#ev:youtube| FoHkqQFiqP8 |240|right|Enhetscirkeln del 2}}
{{#ev:youtube| P9ZWjEkHVrk |240|left|Enhetscirkeln intro}}{{#ev:youtube| FoHkqQFiqP8 |240|right|Enhetscirkeln del 2}}
 
{{#ev:youtube| Mq39-bajmUc |240|left|Enhetscirkeln och ny definition av sinus, cosinus och tangens}}
[[Fil:Sin-cos-defn-I.png|300px|right]]
Dagens lektion handlar om trigonometri och cirklar. genom att titta på enhetscirkeln går vi utanför den rätvinkliga triangeln och kan arbeta med vinklar större än 90°. Genom att enhetscirklen har radien ett blir hypotenusan 1.  
Dagens lektion handlar om trigonometri och cirklar. genom att titta på enhetscirkeln går vi utanför den rätvinkliga triangeln och kan arbeta med vinklar större än 90°. Genom att enhetscirklen har radien ett blir hypotenusan 1.  


{{defruta |
{{defruta | Sinus och kosings i enhetscirkeln
:<math>x = \cos t \qquad y = \sin t</math>
:<math>x = \cos t \qquad y = \sin t</math>
}}
}}
{{wp}}
 
{{clear}}


=== Viktiga samband ===
=== Viktiga samband ===
[[Fil:Sin-cos-defn-I.png|300px|right]]


{{defruta |Speglingar i x-axeln och y-axeln
{{defruta |Speglingar i x-axeln och y-axeln


:<math>x = \sin (180-t = \sin t</math>
:<math>x = \sin \. (180-t) = \sin t</math>
:<math>\cos (- t) = \cos t</math>
:<math>\cos \. (- t) = \cos t</math>
}}
}}
<html>
<iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/79980/width/1366/height/558/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/auto" width="1366px" height="558px" style="border:0px;"> </iframe>
</html>
=== Trigonometriska ekvationer ===
{{#ev:youtube | U5KwQlZduWQ | 340 | right |Lösning av trigonomentrtisk ekvation}}
Trigonometriska ekvationer förklaras i Exempel 2 i boken. Filmen till höger förklarar vad det handlar om.
Det trigonometriska ekvationerna har ofta flera lösningar.
'''Fördjupning:''' Här är en lösning till ekvationen sin v = o.5 i [http://www.wolframalpha.com/input/?i=sin+v+%3D+0.5&t=esm01 Wolfram Alpha]. Den visar två lösningar till ekvationen (samt fler om man går ytterligare varv runt enhetscirkeln).
{{clear}}


=== [[Fördjupning - Enhetscirkeln]] ===
=== [[Fördjupning - Enhetscirkeln]] ===
=== [[Kunskapskontroll Ma3C - Enhetscirkeln]] ===
=== Öva själv ===
=== Öva själv ===



Nuvarande version från 2 september 2015 kl. 23.49

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!
Ma3C: Enhetscirkeln, sidan 16-21
Enhetscirkeln intro
Enhetscirkeln del 2
Enhetscirkeln och ny definition av sinus, cosinus och tangens

Dagens lektion handlar om trigonometri och cirklar. genom att titta på enhetscirkeln går vi utanför den rätvinkliga triangeln och kan arbeta med vinklar större än 90°. Genom att enhetscirklen har radien ett blir hypotenusan 1.

Definition
Sinus och kosings i enhetscirkeln
[math]\displaystyle{ x = \cos t \qquad y = \sin t }[/math]


Viktiga samband

Definition
Speglingar i x-axeln och y-axeln
[math]\displaystyle{ x = \sin \. (180-t) = \sin t }[/math]
[math]\displaystyle{ \cos \. (- t) = \cos t }[/math]


Trigonometriska ekvationer

Lösning av trigonomentrtisk ekvation

Trigonometriska ekvationer förklaras i Exempel 2 i boken. Filmen till höger förklarar vad det handlar om.

Det trigonometriska ekvationerna har ofta flera lösningar.

Fördjupning: Här är en lösning till ekvationen sin v = o.5 i Wolfram Alpha. Den visar två lösningar till ekvationen (samt fler om man går ytterligare varv runt enhetscirkeln).

Fördjupning - Enhetscirkeln

Kunskapskontroll Ma3C - Enhetscirkeln

Öva själv

Tänk! Öva matte på Mattecentrums_räknestugor

Öva på Khan: Unit circle

Läxa! Lös uppgifterna 1301-1309 och gärna fler.

Konstigt facit: Bry er inte om bilden i facit till 1301.