Lektion 3 - Kvadreringsreglerna och andragradsekvationen

Från Wikiskola
Hoppa till navigering Hoppa till sök

Första och andra kvadreringsreglerna

(a+b)² = a² + 2ab + b²

Kvadreringsreglerna är regler i algebran om hur man utvecklar uttrycken

[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math] (Första kvadreringsregeln)
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math] (Andra kvadreringsregeln)


Texten i ovanstående avsnitt kommer från Wikipedia.se

Förklaring

(a-b)2 =  
(a-b)(a-b) =
a2-ab-ba+b2 =          ( och ab = ba )
a2-2ab+b2                V.S.B.

Länkar:

Bondestam respektive Wille på Mattecentrum om kvadreringsregeln:

Potenslagarna, av Åke Dahllöfr


WolframAlpha Widget

Här kan du testa att låta datorn göra parentesmultiplikation:

{{#widget:WolframAlpha|id=c3f53c80c93fa003e2f8f54c64e0e386}}


Konjugatregeln

Ma2C: Konjugatregeln, sidan 22-24


Så här ser den ut:
a2-b2 = (a-b)(a+b)
[math]\displaystyle{ (a-b)\cdot(a+b) }[/math]
[math]\displaystyle{ = a^2 +a\cdot b -a\cdot b -b^2 }[/math]
vi kan stryka ab - ba = ab - ab = 0:
[math]\displaystyle{ = a^2-b^2 }[/math]
V.S.B.

Film

Bondestam (tv) respektive Matteboken (th) förklarar:


Geometriskt bevis av konjugatregeln

Första beviset

Andra beviset

Visualisering

  Här gäller:

  [math]\displaystyle{ (x-y)\cdot(x+y) = x^2 - y^2  }[/math]

  Denna är gjord med Geogebra, sparad som animerad gif, upladdad till WIKIMEDIA COMMONS och länkad hit.

  [math]\displaystyle{ (a - b)\cdot(a + b) = a^2 - b^2  }[/math]

Länk till filen

Uppgifter

Övningar (utan räknare)

  1. [math]\displaystyle{ 1992\cdot 2008 = ? }[/math]

  2.  Lös  [math]\displaystyle{ x^2-1=0 }[/math] för alla reella x.
  Tips : Använd konjugatregeln och nollregeln för ekvationen.
Öva på Khan: Khan: Parentesmultiplikation

Hunnet så här långt kan vi repetera genom att lösa lite uppgifter på Khan Academy. De är dels av typen (a+b)(c+d) men också sådana som tillämpar kvadreringsregeln.

Khan om hur man multiplicerar binom ska du verkligen öva på.


Webbmatte