Formelsamling
länkar
Mekanik
Rörelse
Sträcka
s = v0t + at2 / 2
Hastighet
vm = (vefter + vföre) / 2
vm = ∆s/∆t ∆s = förändring av sträckan, ∆t = motsvarande tidsintervall
Vid en konstant acceleration a, gäller att:
v = v0 + at
Acceleration
Medelaccelerationen = ∆v/∆t där ∆v = vefter-vföre och ∆t = tefter-tföre
Newton
Tyngdkraft
F = ma där F =kraften, m = massan och a = accelerationen
På jorden ofta:
F = mg där g = tyngdaccelerationen på jorden
Gravitationskraften
F = G * m1*m2/r2 där G är en konstan, m är de två massoerna och r är avståndet mellan massorna.
Friktionskraft
F = μ * FN där F är friktionskraften, μ är friktionskoefficienten och FN är Normalkraften.
Formeln som beskriver kraften som förlänger fjädern kallas Hookes lag.
F = k * ∆l där F är fjäderkraften, k är fjäderkonstanten och ∆l är förlängningnen av fjädern
Kraftmoment
M = F * l F är kraften, l är det vinkelräa avståndet mellan kraften och rotationscentrum l kan ses som avståndet till kraftens angreppspunkt men då får man räkna med den vinkelräta komposanten
Energi
W = F * s där F = kraften och s = sträckan
Potentiell energi
WP = mgh där m = massan, g = tyngdaccelerationen och h = höjden
Kinetisk energi
WK = mv2/2 där m = massan, v = hastigheten
Effekt
P = W / t där P = effekt, W = arbetet, t = tiden. Effekt mäts i Watt (vilket också är samma som J/s)
Verkningsgrad
η = Wnyttig/Wtillförd
Tryck
Tryck mellan fasta kroppar
p = F/A där p är trycket i N/m2 = Pascal, Pa F är kraften, ofta mg. Kraften anges i Newton, N. A är arean i m2
Tryck i vätskor
p = ρ g h (Pascals lag)
Archimedes princip
Ett föremål nedsänkt i vätska påverkas av en uppåtriktad kraft, som är lika stor som tyngden av den undanträngda vätskan.
Flyft = mg (Flyft = ρ V g) där m är massan på det undanträngda vattnet och g är tyngdaccelerationen
Allmänna gaslagen
pV = nRT p är trycket V är volymen n är antalet partiklar i gasen R är allmänna gaskonstanten T är temperaturen
Värme
Värme
W = c m ∆T där ∆T är temperaturskillnaden, m = massan och c = specifika värmekapaciteten. Ibland skriver man cp där p anger att det är uppmätt vid konstant tryck. Enheten för c är kJ/(kg·K)
Smältvärme
Ws = lsm
Ångbildningsvärme
Wå = låm
Verkningsgrad
η = 1 - Tkall/Tvarm
Konstanter
Tabellerna nedan är en sammanfattning av NoK Formler och tabeller, sid 68-69.
Tabell över specifika värmekapaciteten för några ämnen
Ämne | Cp [kJ/(kg·K)] | |
---|---|---|
Järn | 0,449 | |
Aluminium | 0,897 | |
Vatten | 4,181 | |
Etanol | 2,44 | |
Glas | 0,84 | |
Paraffin | 2,1-2,9 | |
Silver | 0,232 | |
Trä | 0,4 |
Tabellen ovan från Wikipedia
Tabell över smältentalpitet och ångbildningsentalpitet
Ämne | ls [kJ/kg] | lå [kJ/kg] | |
---|---|---|---|
Etanol | 105 | 841 | |
Glykol | - | 800 | |
Vatten | 334 | 2260 | |
Metanol | - | 1100 |
Ellära
Kraften mellan två laddningar - Coulombs lag
F = k * q1q2/r2 där F är kraften i Newton k är en konstant = 8.99 109 q är laddningarna som har enheten C r är avståndet mellan laddningarna
Elektrisk ström, I
I = q/t där q är laddningen, t är tiden
Spänning, U
U = W/q där W är laddningens elektriska energi
Resistans, R i en ledare
R = ρ l/A där ρ är en materialkonstant, resistiviteten där l är ledarens längd och A dess tvärsnittsarea
Ohms lag
U = R I
Effekt
P = U I där U är spänningen I är strömmen
Kirchhoff
Kirchhoffs lag säger att ströömmarna som går in i en förgrening är lika stora som strömmarna som går ut ur förgreningen.
Resistanser i serie
R = R1 + R2 + R3 + ... + Rn
Resistansen i en parallellkoppling
1/R = 1/R1 + 1/R2 + 1/R3 + ... + 1/Rn
Polspänningen hos ett batteri
U = Ems - Ri I Där U är polspänningen på batteriet (spänningen batteriet lämnar) Ri är inre resistansen Ems är elektromotoriska spänningen (batteriets märkspänning)
Elektrisk fältstyrka
E = F/q där E är den elektriska fältstyrkan F är den elektriska kraften på laddningen q och q är laddningen Enheten för elektrisk fältstyrka är N/C eller V/m.
Homogent elektriskt fält
E = U/d där U är spänningen mellan plattorna och d är avståndet mellan plattorna
Optik
Reflektionslagen
[math]\displaystyle{ i=r }[/math]
där [math]\displaystyle{ i }[/math] är vinkeln för det infallande ljuset och [math]\displaystyle{ r }[/math] vinkeln för det reflekterade
Förstoring
[math]\displaystyle{ M = \frac{h_2}{h_1} }[/math]
där [math]\displaystyle{ h_1 }[/math] föremålets storlek och [math]\displaystyle{ h_2 }[/math] bildens storlek
Vinkelförstoring
[math]\displaystyle{ G = \frac{\beta}{\alpha} }[/math]
där [math]\displaystyle{ \beta }[/math] är synvinkeln med hjälpmedel och [math]\displaystyle{ \alpha }[/math] är synvinkeln utan hjälpmedel
Brytningsindex
[math]\displaystyle{ n = \frac{c}{v} }[/math]
där [math]\displaystyle{ n }[/math] är brytningsindex, [math]\displaystyle{ c }[/math] är ljushastigheten i vakuum och [math]\displaystyle{ v }[/math] är ljushastigheten i materialet.
Snells brytningslag
[math]\displaystyle{ n_1\sin(\theta_1) = n_2\sin(\theta_2). \, }[/math]
där [math]\displaystyle{ n_1\ }[/math] är brytningsindex i det första mediet och [math]\displaystyle{ \theta_1 }[/math] är vinkeln hos det infallande ljuset där [math]\displaystyle{ n_2 }[/math] är brytningsindex i det andra mediet och [math]\displaystyle{ \theta_2 }[/math] är vinkeln hos det brutna ljuset
Totalreflektion
Totalreflektion sker när brytningsvinkeln är 90 grader, det vill säga:
- [math]\displaystyle{ n_1 \sin i = n_2 \sin 90^\circ }[/math]
Linsformeln
[math]\displaystyle{ \frac{1}{a} + \frac{1}{b} = \frac{1}{f} }[/math]
där [math]\displaystyle{ a }[/math] är avståndet till föremålet, [math]\displaystyle{ b }[/math] är avståndet till bilden och [math]\displaystyle{ f }[/math] är linsens brännvid
.....