Deriveringsregler för potensfunktioner

Från Wikiskola
Version från den 21 juni 2018 kl. 09.42 av Hakan (diskussion | bidrag) (Skapade sidan med '{{#ev:youtube| xZL-fv8ik10 |250|right|Sid 130-135 - Deriveringsregler för polynom. Av Åke Dahllöf, Youtubelicens.}} {{lm3c|Deriveringsregler polynom|130-135}} Det går att...')
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök
Sid 130-135 - Deriveringsregler för polynom. Av Åke Dahllöf, Youtubelicens.
Ma3C: Deriveringsregler polynom, sidan 130-135


Det går att härleda deriveringsreglerna för polynom genom att använda derivatans definition.

Proöva själv med:

[math]\displaystyle{ f(x) = x }[/math]
[math]\displaystyle{ f(x) = x^2 }[/math]
[math]\displaystyle{ f(x) = x^3 }[/math]


Definition
Deriveringsregler polynom


Om [math]\displaystyle{ f(x) = x^n }[/math] skrivs [math]\displaystyle{ f'(x) = n \cdot x^{n-1} }[/math].
Om [math]\displaystyle{ f(x) = k \cdot g(x) }[/math] så är [math]\displaystyle{ f'(x) = k \cdot g'(x) }[/math]
Om [math]\displaystyle{ f(x) = C }[/math] där C är en konstant så är [math]\displaystyle{ f'(x) = 0 }[/math]
Om [math]\displaystyle{ f(x) = g(x) + h(x) }[/math] så är [math]\displaystyle{ f'(x) = g'(x) + h'(x) }[/math]