Exponentialfunktioner Ma1c
|
Teori
Definition |
---|
|
Exponentialfunktioner är en klass av matematiska funktioner som kännetecknas av att funktionsvärdets ändringstakt är proportionell mot funktionsvärdet. Exempelvis kan ränta på ränta beräknas som
- [math]\displaystyle{ slutbeloppet = r^x\cdot startbeloppet }[/math]
där [math]\displaystyle{ r^x }[/math] är en exponentialfunktion, den årliga räntefaktorn är r (till exempel 1,10 för 10 % ränta) och x antalet år.
Exponentialfunktionerna kan skrivas på flera former, exempelvis
- [math]\displaystyle{ f(x) = C \cdot e^{kx} }[/math]
- [math]\displaystyle{ f(x) = C \cdot a^{x} }[/math]
- [math]\displaystyle{ f(x) = e^{kx + a} }[/math]
Då det talas om exponentialfunktionen (i bestämd form), avses funktionen [math]\displaystyle{ f(x) = e^x }[/math] (skrivs även som exp(x) i de flesta programspråk).
Exponentialfunktionen representerad som värdetabell och graf
Filen finns på GeoGebraTube och heter Exempel fr Liber Ma1C, sid 216. Exponentialfunktioner.
Aktivitet
GeoGebra
Prova att skriva in egna exponentialfunktioner i GeoGebra.
Känn igen funktionen
Lär mer
Hur ändras temperaturen när kafet svalnar: Wikipedia skriver om Newtons_avsvalningslag