Diskussion:Potenser

Från Wikiskola
Hoppa till navigering Hoppa till sök

Bortplockat från huvudsidan

Läxa till måndag att räkna klart sidan 32. Dessutom inlämningsuppgift till nästa fredag. Wolfram Alpha


Teori om potenser

Definition: Potens

I sin enklaste form definierar vi potenser som resultatet av upprepad multiplikation.

Exempel
Exempelvis, 43 (utläses 4 upphöjt till 3) blir 4 · 4 · 4 = 64.


Potenslagarna, av Åke Dahllöfr

Satser: Räkneregler för potenser

Ur definitionen av potenser med positiva tal som heltalsexponent kan man härleda följande räkneregler, potenslagarna:

[math]\displaystyle{ {(x \cdot y)}^n = x^n \cdot y^n }[/math]


[math]\displaystyle{ { \left( {x \over y }\right)^m} = {x^m \over y^m} }[/math]


[math]\displaystyle{ x^m \cdot x^n = x^{m+n} }[/math]


[math]\displaystyle{ {x^m \over x^n} = x^{m-n}, (x \ne 0) }[/math]


[math]\displaystyle{ {(x^m)}^n = x^{m \cdot n} }[/math]


Texten i ovanstående avsnitt kommer från Wikipedia.se

Wikipedia skriver om Potens_(matematik)


Definition: Exponenten är noll

Med utgångspunkt i att potenslagarna skall gälla även när exponenten är ett negativt heltal inför man definitionerna att

a0 = 1 (om a ≠ 0)

Exempel: 20 = 1

Definition: Exponenten är negativ

  • an = 1 / an (om a ≠ 0).
Exempel: 21 = 1 / 21

Definition: Exponenten är ett rationellt tal

För att den tredje potenslagen ska fungera, definieras värdet av potenser med rationell exponenter

  • x = a p/q (där a > 0) är det positiva tal x som uppfyller xq = ap
Speciellt betecknas a1/2 som kvadratroten ur a och a1/3 som kubikroten ur a.

Satser: Roten ur produkter och kvoter

Potenser.


Satser och definitioner nedan är hämtade från Wikipedia.

Tänk! Approximationer till pi

Viiste du att du kommer ganska nära pi om du tar

[math]\displaystyle{ 355 / 133? }[/math]

Ett annat collt sätt att komma nära pi är

[math]\displaystyle{ \frac{7^7}{4^9} }[/math]

och samtidigt ärr 7*7 = 49