Exponentialfördelningen
Definition |
---|
Exponentialfördelningen
Exponentialfördelningen är kontinuerlig sannolikhetsfördelning med täthetsfunktionen
Där :[math]\displaystyle{ \lambda }[/math] är antalet händelser per tidsenhet. Eller intensiteten för händelser. Exponentialfördelningen beskriver tiden tills en händelse inträffar |
[math]\displaystyle{ \lambda }[/math] kan ha olika betydelser i olika sammanhang:
- händelseintensitet
- felintensitet (livslängden för en komponent)
- felfrekvens
- dödstal
- övergångshastighet
- ankomsthastigheten
Exempel på variabler som är approximativt exponentialfördelade är
- Tiden tills någon råkar ut för sin nästa bilolycka
- Tiden tills någon får sitt nästa telefonsamtal
- Avståndet mellan mutationer på en DNA-sträng
En viktig egenskap hos exponentialfördelningen är att den "saknar minne". Med andra ord, chansen att tillståndet kommer att förändras inom de nästa s sekunderna påverkas inte av den tid som redan förflutit.
Hemuppgift
Uppgift |
---|
Vad är [math]\displaystyle{ \lambda }[/math]?
Läs vad Wikipedia skriver om Exponentialfördelning eller ännu hellre Wikipedia: Exponential_distribution och ta reda på hur [math]\displaystyle{ \lambda }[/math] förhåller sig till:
Fundera över frågorna under GeoGebran nedan. |
Exempel med glödlampa
Exponentialfördelningen kan användas för att bestämma en glödlampas livslängd. Lambda är 0.05 och x är antalet månader.
Lambda är 1 / medellivslängden för en glödlampa.
Frågor
Vad innebär frekvensfunktionens skärning med y-axeln?
Vad är innebörden av linjen "hälften"?
Fördjupning
En text från Chalmers som beskriver Våra vanligaste fördelningar.