Rotekvationer

Från Wikiskola
Version från den 3 januari 2016 kl. 21.09 av Hakan (diskussion | bidrag) (Skapade sidan med '{{flipp| - }}{{lm2c|Diverse|45-49}} {{TE12A|8}} {{#ev:youtube|8hY6gm_NTMg|320|right|Rotekvationen}} '''Teori''' Rotekvationer innehåller x-termer och roten ur x-termer....')
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök
Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!
Ma2C: Diverse, sidan 45-49

Lektion 8

Rotekvationen

Teori

Rotekvationer innehåller x-termer och roten ur x-termer. Man löser dem genom att kvadrera båda leden.

[math]\displaystyle{ \sqrt{x+2} = x }[/math]

Kvadrera båda sidorna:

[math]\displaystyle{ x+2 = x^2 }[/math]
[math]\displaystyle{ x^2 - x - 2 = 0 }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 2} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{9}{4}} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \frac{3}{2} }[/math]
[math]\displaystyle{ x_1 = - 1, x_2 = 2 }[/math]

Viktigt att kolla om man har falska rötter.

[math]\displaystyle{ -1 }[/math] är en falsk rot eftersom den inte gör att vänster led och höger led blir lika i ursprungsekvationen.

Svaret är alltså [math]\displaystyle{ x = 2 }[/math]