Laddningar och fält

Från Wikiskola
Hoppa till navigering Hoppa till sök

Begrepp

Uppgift
Begreppsförhör

Vi kommer att ha ett förhör på fysikbegrepp. Ungefär som ett glosprov.

Leta rätt på alla begrepp i kapitlet och gör en lista. Skriv upp definitionen för varje begrepp. Ofta hittar du begreppen i små rutor i bokens marginaler eller som kursiverade ord i texten. Du kan även leta på liknande sätt efter begrepp i Wikiskola.



Begrepp i kapitel 6 Heureka
Begreppsförhör Du kan göra testet själv för att se om du behärskar begreppen i kapitlet.

Experiment med laddade kulor

Laddning

Kraften mellan två laddningar

F = k * q1q2/r2

där F är kraften i Newton
k är en konstant = 8.99 109
q är laddningarna som har enheten C
r är avståndet mellan laddningarna

Exempel: Räkna ut kraften mellan laddningarna om man har en proton och en elektron i en atomkärna. Svar: 3.5 10-7

Jämför gärna med gravitationsformeln:

F = G * m1*m2/r2
där G är en konstant, m är de två massorna 
och r är avståndet mellan massorna.

Exempel: Räkna ut kraften mellan massorna om man har en proton och en elektron i en atomkärna. Svar: 3.5 10-47

Ballongen och håret

Om man gnider en ballong mot håret så blir den elektriskt laddad eftersom man gnider loss elektroner från håret och dessa tas up av ballongen. Men hur vet man att det är ballongen som får elektronerna och inte tvärt om?

Som tu är finns det en tabell på sid 157 i boken där någraa vanliga ämnen kommer i fallande ordning efter hur benägna de är att ta upp elektroner om de gnids mot varandra. Gummi är mest benäget och sen kommer koppar, bärnsten, trä, bomull, vår hud, bly, kattpäls, ull, glas och kaninpäls.

Kaninpäls lämna alltså ifrån sig elektroner om det gnids mot något av de andra materialen på listan.

Men frågan om varför skalan ser ut som den gör lämnar vi därhän.

Laddningens storlek

Protonen och elektronen har samma laddning fast med olika tecken. Elektronen är negativ och protonen positiv. Storleken på en sådan laddning kallas en elementarladdning. Elementarladdningen är 1.6 10-19 C.

Laddningar och fält

Länkar:

Det finns massor på PhET: http://phet.colorado.edu/en/simulations/category/physics

Balloons and Static Electricity
Click to Run

Här kommer en om laddning:



Här kommer ne film från Khan Academy. Det finn många fler i serien. Det fina med filmerna är at tde har undertexter (subtitles). Det finns redan textat på flera språk men vi ska bidra med översättningar till svenska. Det är lätt. Man ska ffar en inloggning på Universal subtitles och sätter igång.

Elektriska fält

NoK Heureka Fysik 1: 141-147


Flippa tre filmer

Tre filmer

Dessa filmer är tillsammans drygt en halvtimme.

Elektriska fält - definitioner

Elektriskafältdef

Milikans experiment

Simplified scheme of Millikan’s oil-drop experiment

Robert Milikan fick Nobelpriset för sitt oljedroppsexperiment där han bestämde elementarladdningen. Det är verkligen värt att läsa om.

Simulerat elektriskt fält mellan laddade partiklar.


Electric Field of Dreams
Click to Run


Uppgifter

Flytta alla protoner

Uppgift 6.16 i Heureka är bra. Den handlar om att man tänker sig en förflyttning av alla protonerna i 8 kg järn till månen och vilken kraft det ger upphov till. Uppgiften innehåller mycket text för eleverna att tolka och jag hade dem att presentera så utförliga lösningar som möjligt. Uppgiften är tillräckligt djup för att gå att bedöma från E till A. Det tog eleverna 40 minuter att prestera godtagbara lösningar. Elementarladdningen 0.16 aC ställde till huvudbry bland annat.

Uträkningarna innehöll potensräkning i kvadrat och ställde också till problem. jag har en fräck uträkning i Wolfram Alpha nedan:

Lösning till 6.16 i Wolfram Alpha

Testladdningen

Uppgift: Hur stort är det elektriska fältet i en punkt?

Hur stor är elektriska fältstyrkan 25 cm ifrån en kula med laddningen 40 nC?


Facit: (klicka expandera till höger)

Facit till uppgiften om fältet i en punkt

Avståndet [math]\displaystyle{ r = 25 cm = 0.25 m }[/math]

Laddningen[math]\displaystyle{ Q = 40 nC = 40* 10^-^9 C }[/math]

Det finns ju bara en laddning så för att kunna använda Coulombs lag tänker vi oss en testladdning på avståndet 25 cm från den laddade kulan. Vi kallar testladdningen för q.

Coulombs lag ger då att kraften (på laddningen q) ges av [math]\displaystyle{ F = k Q q / r^2 }[/math]

Det elektriska fältet [math]\displaystyle{ E = F / q }[/math]vilket ger [math]\displaystyle{ E = k Q q /q r^2 = k Q / r^2 }[/math]

Beräkning: [math]\displaystyle{ E = k Q / r^2 = 9* 10^9* 40* 10^-^9 /0.25^2 = 5.8 kN/C }[/math]



Demo - Van de Graafgeneratorn

Principskiss
1. Metallklot med positiv laddning
2. Elektrod som släpar mot bandet, kopplad till det positiva metallklotet
3. Plastrulle
4. Positivt laddad del av bandet
5. Negativt laddad del av bandet
6. Metallrulle
7. Elektrod kopplad till det negativt laddade klotet
8. Metallklot med negativ laddning
9. Överslagsblixt

Länk: Van de Graafgenerator

Funktion

Ladda upp håret

Antingen på en person eller med löshåret

Blixtar

Lysrör mm

Nål mot stearinljuset

Elektrostatisk motor

Propellern som finns med

Pajformar

Ledande pingisboll

ladda bollen och den repelleras av klotet. man kan ladda upp bollar och göra experiment å en våg.

Voltas hagelstorm

Partiklar studsar i burk

Mr Bean

Teslaspolar

EmbedVideo - Felaktigt värde har angivits som placering: "rleft". Korrekta värden är "right" för högerställd, "left" för vänsterställd, "center" för centrerad eller "inline".