Samband och förändring

Från Wikiskola
Hoppa till navigering Hoppa till sök

Kapitel 4 handlar om Samband och förändring och består av 14 delar.

4.1 Procent

Flipp: Introduktion till procent

Flippa = Se denna till nästa lektion!

Introduktion till Procent av Mikael Bondestam


Procentbegreppet och tre problemtyper, 174-178

Flippa = Se denna till nästa lektion!

Bondestam om procenträkning med hjälp av förändringsfaktorn.

Hur bra passar den till avsnittet?

Hitta gärna en bättre film.


Promille och ppm, 178-180

Flippa = Se denna till nästa lektion!

Mikael Bondestam om promille och ppm


Procentenheter, 181-183

Flippa = Se denna till nästa lektion!


Mikael Bondestam om skillnaden mellan procent och procentenheter.

De ständigt i procentsammanhang aktuella Kristdemokraterna.


Förändringsfaktor, 184-188

Flippa = Se denna till nästa lektion!

Bondestam om förändringsfaktorn


Index, 189-191

Flippa = Se denna till nästa lektion!

Mikael Bondestam om förändringsfaktorn


Kul grej

Bråk, decimal procent i GeoGebra

Ränta, 192-195

Flippa = Se denna till nästa lektion!

Mikael Bondestam om lån, ränta och amortering.


Räkneexempel med uppgift 5 från Diagnos 6

Uppg5

Börja med att som repetition göra uppgift 5 från Diagnos 8. Gör det på det krångliga sättet (elevlösning) och jämför med hur enklet det blir med hjälp av förändringsfaktorn.

Kolla: Wolfram Alpha är enastående på uppgift 10.

Genomgång Ränta

Exempel 1 på sid 193 i boken Det lönar sig att lösa uppgiften i Excel.

4.2 Funktionsbegreppet

Flippa = Se denna till nästa lektion!

Mikael Bondestam ger en introduktion till funktioner


Vad är en funktion? 196-200

tis

Följande GeoGebrafil har jag gjort själv. Den visar tre sätt att rita parabler.

genom att mata in ordet parabel samt ange tre punkter 
genom att angen linje och en punkt (styrlinje och brännpunkt
genom att ange funktionen (inklusive start och stoppvärden = definitionsmängd)

Observera att de tre punkterna I, G, H på den blå parabeln motsvarar lösningen på Exempel 1 i boken sidan 197.


Filen finns på GeoGebraTube och heter Funktionsbegreppet med parabler.

Definitionsmängd och värdemängd, 201-203

Flippa = Se denna till nästa lektion!

En film av Mikael Bondestam om Linjära funktioners definitionsmängd och värdemängd


GeoGebra-övning

Jag instruerar och eleverna prövar att rita en trinangel med omskriven cirkel.

4.3 Linjära funktioner

Flippa = Se denna till nästa lektion!

En film om Linjära funktioner - Räta linjens ekvation från Matematikvideo.se


Linjära funktioner

Repetition: Förra gången stiftade vi bekantskap med en parabel som naturligtvis låter sig ritas i GeoGebra. En av kurvorna är precis den som kommer ur bokens Exempel 1 på sidan 197.

Man kan naturligtvis rita kurvan i Wolfram Alpha oxå. Det är bara att högerlicka på uttrycket i GeoGebra och kopiera till inmatningsfältet. Wolfram Alpha finns förresten som en Gadget till er som har Vistra eller 7:an.

Här kommer en grafisk lösning till exempel 2 på sidan 206 (GeoGebra):

Filen finns på GeoGebraTube.org och heter Ma2C exempel sid 206 linjära funktioner

Öka din förståelse av räta linjen med Geogebra

Filen är en översättning av en amerkiansk GGB. Min version finns på GeoGebraTube och heter Räta linjen k och m-värden.

Sidorna 204-208

info saknas

Räta linjen i Javascript

Räta linjen by TE12A

Bra interaktiv övning

Geogebra Undersök med Geogebra-applet: Interaktiv övning


Klurig läxa

Tristan och Isolde

4.4 Proportionalitet

Flippa = Se denna till nästa lektion!

Mikael Bondestam om proportionalitet


Teori utifrån en diagnos

Titta på denna länk

Sen har jag gjoret en busenkel GeoGebra om räta linjens ekvation (linjära funktioner). Den är gjord i tre steg. titta i konstruktionsprotokollet. Visa/ konstruktionsprotokoll.


Denna GGB finns på GeoGebraTube och heter Busenkel linjär funktion

Övningar

Här är en som är enkel:

http://geogebratube.org/student/m23347

Här är en bra men den ser inte snygg ut i Mac-Kan fixas till.

http://geogebratube.org/student/m23346

De bör bäddas in i sidan.

Direkt proportionalitet, 209-212

Teori

400
400

Direkt proportionalitet är å ena sida enklare än räta linjen. Det är ett specialfall när m = 0. Det betyder att linjen går genom origo.

Å andra sidan dyker proportionaliteten upp i en mängd sammanhang i exempelvis fysiken. Här kommer ett sträcka-tid-diagram (st-diagram). Det är teoriavsnittet i boken sid 209.

Exempel 1

Kommer snart

Exempel 2, sid 210

Den interaktiva GeoGebrafilen finns här: Ma1C Ex 2 s 210

Fler proportionaliteter, 213-215

måndag

Genomgång av Veckodiagnosen

Vi går igenom uppgift 3 och 5 från Diagnos 9. Trean kommer nedan men femman var enbart på tavlan.

Uppgift 3 löd så här:

3. Ulla lånar 180 000 för att köpa en bil. Lånet är med rak amortering på sex år och räntan är 5,6 %. Hur mycket måste Ulla betala varje månad?

Detta kan bli en mycket jobbig uppgift om man ska ge ett svar för varje månad. Det är ju 72 månader på sex år. Här får man själv göra några avgränsningar av uppgiften så att den blir rimlig.

Till att börja med kan man ju visa att man förstår att rak amortering innebär att beloppet delas upp i lika stora delar per månad.

180 000 / 6 = 30 000 kr per år
30 000 /12 = 2 500 per månad i amortering

Till detta kommer en ränta på det kvarvarande beloppet. Räntan kommer därför att sjunka månad för månad.

Här kan det räcka med att visa vad räntan blir för två eller tre månade, exempelvis efter en månad, 12 månader och 24 månader.

Excel

Om man vill kan man göra en kalkyl i Excel över lånekostnaden månad för månad.

Algebraisk lösning av uppgift 3

180 000 kr ==> Amortering 2500 per månad
ränta 5.6 % ==> förändringsfaktorn 1.056
månad     lån [tKr]        räntekostnad          att betala
 1        180              180*1.056             2500+180*1.056
 2        177.5            177.5*1.056           2500+177.5*1.056 
 3        175              175*1.056             2500+175*1.056 
 ..
 n        180-2500(n-1)    180-2500(n-1)*1.056   2500+(180-2500(n-1))*1.056

Månadskostnaden för månad nummer n är alltså 2500+(180-2500(n-1))*1.056

Intro - Fritt fall

Önskebrunnen på Tom Tits

Beräkning av djupet

s = at2/2

Vi hjälps åt med att ta tid. Genom att beräkna medelvärdet får vi bättre noggrannhet.

Mätning av djupet

En annan metod är att ta ett måttband och mäta djupet. Det visade att brunnen var ungefär 5 m djup.

4.5 Potensfunktioner

Flippa = Se denna till nästa lektion!

Mikael Bondestam om potensfunktionen

Ma1C: Potensfunktionen, sidan , 216-217

4.6 Exponentialfunktioner

Flippa = Se denna till nästa lektion!

Mikael Bondestam om exponentialfunktionen


Sidorna, 218-222

Här ett exempel från boken.


Filen finns på GeoGebraTube och heter Exempel fr Liber Ma1C, sid 216. Exponentialfunktioner.

4.7 Mer om grafiska lösningar

Sidorna 223-230

Teori


Filen ligger på GeoGebraTube och heter Liber Ma1C, exempel sid 223.


Vektorer

Vi skulle behöva repetera vektorer helt kort.

Öva matte

Khans Academy

Repetition: Övning på räta linjens ekvation

Den här övningen är jättefin och har en egen sida.

Geogebra Undersök med Geogebra-applet: Hitta räta linjen