Cylindern - en tillämpad övning
Vilken maxvolym har en cylinder där summan av radien och höjden understiger tolv?
Alltså, radie plus höjd = 12.
<ggb_applet width="1051" height="619" version="4.2" ggbBase64="UEsDBBQACAgIAFM+S0IAAAAAAAAAAAAAAAA2AAAAY2I0MjMwZjc4YTAzY2IxODQ5ZWQ1MDQzMWJkOGYzM2MvQ3lsaW5kZXJfZ2VvbWV0cnkuZ2lm7VdpOBRu9x5j34doQYwlhZHsss4wGHuW7PsaImPLWDMjypLJID9kL8ma0aQRsmXIkn3LEiPJIMska3/9+n9+P78f3vPlec55zrnPc93X9VzPfR7eMNVnZ+FjAQAA7AYIuMXpSgIAaFKYaE93rzWkpwEAWsANYyvdU5eVlZWbm5ufn19UVBQCgcjLy6upqeno6BgZGVlaWjo6Onp4ePj7+4eGhkZERCQkJKSkpOBwuLy8vNLS0srKSjweTyQSOzo6+vr6hoeHZ2ZmlpaW1tbWdnZ2Tk5OAP+z/9l/sblNxFQCABzvDeAwq4jp9aeMITOq3PfOAVgnRx1llEM2f/+uyTO63WXtRs8fVJYs3VNfpfew7pXhrtygaSpnkxGkLoX3gLElyfUGmKWMa2jgRCbYecAFjQG9r/xtaXaOIQEgil6R+ewMcrbKONeVXL9WvPSd3RuOHqzL1rIdeW0YlAeNyF62u/pdS6T/pXfeaOsbTmTxVeezEnnH9LPXQmldLpYZ4yFSlVogD6U2slFhtFDI9QlX2/SSdtme11CWD7b9RZYdKt6mzLLnDvrqxSoS3S0ij4I+IVndB2ztx9meB+Z3deLVvVD0+iYvXdgSugyWhxmefUUVaqh7QSoVPBwaUKDHncyMs0oSfp7XQZC0kPfZAcXisEUsc1F2NQxn0clMC3dqEsZCUlVePv/O3Qao5ZGpW+LzYfzilqOjaMB09VKJhda3mpRB5ox9rls1Rgv1FgluzKbdKueY8uSC1HckX4FZRYucIjmwpEHshHCQtMQx9PzFFStskD1osCmwbhBTNErckAD3qFzW2DvIY+cyMWy+c5E1I+3CRvj0qzvcbZkOGkvnscHc6An/QY4MM2BQFNkV6wqhtDAEZLgLlLbs2UFmZ07uJhaHTwRMJQqqZeqmLtJC292G3o4Uh5WgxiLNUmNgv1LMBB3ppHk87Qwy76SkvrlHHqzYKYIZ6YakqBBIguAtLOcBk70USdj8xZoL+lctuS3ROsW3i0upFXDBhKp/0f5qLq6zfZp5my+Xk85eZtLEI3AdgGJfxfCUt5HckL5xLHLM3zSA2ASx+LGA3u9HjJY6Zx8lk9tyGGZgk4gobGKp+JDeqhJ2WyYSK+mA3hyq+wzcfjLvB8769uZoWRSBjVRCiBO60SbY4CoqTHXVfymY1hMS+Dga/E3PeBxWT1KCaReH59TGGxdzWhi28h2wILiacvPBuWeypMA0oVCL1XutQO4LxCpwIlczpm6Y3rdLYkQZSwdBwW4/mFfUVkDBFNqzwSLyMHdZ+VeAnjbsBXjSIjscxy/mci8ILIcBXZmHYvvAt6zVb2I8wXzHBkvI0t/qtYBsPgn+Y4OwVbNS8JE0/Itc3vhn+R+UuxLyiLdACxKbRZ8gcR7oWcGlEBLleymKtqKk2sr5UWhLOASNa+ypezWlod1A9Jko1eNk4tOYfEDlBTWler2u8sr1pEHH2MGeR/DSoXxFKrTrOexp4jkCr9V5VLXd44mqHOBozFP2cSw1D0m8CVl7kp00eTEm46OP7T7cxZq1eVk/sCslGiwTxJoH1lPm7/mwlds8MdpcPhep8IC8yKQzfT8dHKTvnGMsQMn63KYEOrqXyH2/bSpImrU5Fzu+2YVXEJvCN7qYCFd5ja9q3EGTJ2q9VcZZ+ieM6KqiTsTuF4qZLcbG3K0zX3PVKPJhLnByWxbiv/87T5d/9/G71JkB2chL6XlqbZxjlw9ajX+/HVtxXLZ0PTnASh7Z6ukIavxsxTNQW+MKxzRiy+eWut3uVDLyfW4LEpuu4JDla591/XiO4K13e+cO9vOns8F1E+i5QBP0bbMtbLfrEeXnjHVLV7cwX7TF8m+7ml68S0fjiK/lIvyXpdtsdDbuQGFVbwO3JfZNrfrLgw9qMlQKSdDeWgXFfLBO+lVvYBgYnqVIMcYQB0bjpte2HUfOWyYSZ5+Gt6gVpkQWCKlvIlGB5WymipJaOk9rr4Jis3LEjwNB71Kbyh0vXzcoFcnPLtuj0rfXylMaZ9jLS18tOXfYDV/jnu7XvKQVlcXSGCiQULyh+qS/+4l5DmZ5/W5Oq08/JuCJm4qgQ01YRZaumBvQPm7z7UxTBCa0KavgDDxg7UZzKufVHAguh5ks6N6fZFWc8xX8CEfHNqP5YuHqdTax9CU2rJdQ+N2TumA+sgq6a8uzxBynZP7Qsi6TF+p4uJDNzZjOYDduktvpxpRgsZP/DItSXcOX3F33eFnzKNd6hIL8MHwFeJsvEUn021b/OOzn4KciriFH1gwHTRLWNMUljL4ex7GtN+qH2HlOVW2C5IwjDVMyLL3POIyJataqfR1NcnuxcbHMfzoWwxU2U2TofTP6tb2Z4jCuX3uiElrVt+3nuJOmaR/+SQRPsKLy/7Arrf5e7Rg+by/WbWIykYaH4FdQuyB/wlE2FWLT0aesfPTbKc7ZtQRnH7PCxjNwwHbp4+OHXt143RG8bhNetxuvh8Z498pxvY3IKvvO8usM7PyhOLj0sZw0fQmU5wFwvwb8pBG4Y+QLj7+CLaQJnlNvGn4ANAezwOOPGoqQP5ygL/5NDe+NODKBZsD/yf576Cg8Xt/CinD511fTXZ7K8pUA/QuZHAtbnuI9RZYFSw7W/OlhDpa8pa5rVeC0fxoV/hM1Noq/cpqN/mAJP61Mv4IVApZsU3obRtGNWDBJ7XiziGuQOLfy6+lEQ/0mMANzIg2N8I3m9KmFGBl3ZMxVm6VHo36ykSynlOe1/B2t08ig2dx7SfcpmhltaXZxfAXiaohHq2z6TwTEzn0Y74IT1Q/deXseU54r2uj21NZfKRAiG1YeomC7a10OPnRcy1X+3gxfrDbouY7lDwfXq6eFCeLwfbhVwbF+bjZw/+F/ujHPX7J0W4s28FIg+m0P6GhM+F9qzWFLEn9y9HlInDTmqHAv+1PeroB4FQpETgGjTwkGgbJ8bJ4/+3+ODuhPPTALufveC/Wmvyy/KNriOa1cFu3VV9L9UU9G6xwbAWqfswq/p8qgmfWqGSX8KkCNk/sBTB7aDfb2jBbedv1158WH1lDdns8Tv68zC/pEVsxJkupjeUNGk3Un2IdZsOqVCROA3GerY6RPzgVXkkVqP40cRPPzZ32zofsi4WGX5vrteY3Qz0koUfMjaUvdDH/hEazioQxn+wUjKSb3mzhUr6frSKjUysux74euOZmLrOgyZIYNiOOZT7CNCV5KtJpHgK7IgYBiBrUt5mC+Wux8Ngt0ulsczPf1cJIg4ccD7+Q64zptbdn8XqE/Xt20HWRHSMsFGnQgwH4zSfZb8ajw5pllZH4nCdnPAO29BnkfXC2avdyxQ5kM032WfSPEKdgZq+JatDfLqudNIqDOm4qP4gcZREp84zX2FquXg8ot7eRHiBt20IiFkIAFkcbE0/e/63K5IMmM/q8SKBuqsyRYk3ZE4uSoqmQekCyVfr2A2MH/NEcYKaBExZieu8jObWqIv9NOvT8cqs4etYH8IxbecDTo9HXfOvq+V90BSzZHHz49u+51US2Hozo+HPxAiyuw1Yk/chTZ/WWz5S4TYl95LNDkVt4C/0oYz+zjZliJzdCq8K3iTy5LC3tpzSvIT9/otXYdesynJhYETx79HEZ4WeelzZtl7nydqo7jxFBKUTHnkSeX19UbDiY5tMKHtfZtwBQz1ExSttFvQrR7k4nUhRLGyDFY4kg7/y/YVq1TG0EncXBvnCNNTOcowokjqAma6LuXEju6y8WJG4RNgrQU6tZUIIMFMPLnty4BsFRGdc/CeLLO7i3HWZrgHy8BmwwtYrCOaDWmuLN7B1SN67R3ajflN7rk51nkIHdWqdd/zR3vrJrs3+UniVGnQXihT+Fz1EmyKEJVkeETC/a4P8rVGM8Jrv1Ww5viFEtipPnc/lH8QeGeAtZEtGhv2zXGa8Wy+e3sAkw8ajIpNrTjIZ5hcYdBC7FQ5PMljiO/zM21NiebyZi1jOfjjy4WRF8TuCIU9Y5FG2IHu13PkqFM5FGKKpwdsBFqDcdpvZw6pAx8V0UbY62NdxlE3gMedgFeAb4U9bCVxAhht9kTSGza3nxDBAFYvhP8p/dAVuZyMJ2n4KWCX7onDGj+8QenXx2DBfWMuONG4js7hX1G0xMR53vnkXjGZn7G2K9yAwVaO2rlsa9SU5XTmBrBzM9WjkVSfmhLnTf852lzPkqPvUTnqjzpaOmkhf4BAQDTk5RH+BUts2h/1Ha/n7kbINEAfnxO7J9N2Fc+4eJ3YC7ZecyZy7jxWXyf3cN61WtZvJ0ukB8hIHf9DGIU13VPxY31dltTLFeozR7FVUUW9xhzqaaFARizK0leAtW+YFwDl7kgbjmWukOVoO9LYRB+fQGLc0qwhbOtCEIOWYaskfSDQ3ujE/uxsy3J/RnBe3kyniPZ56GAszovJovWYthhilsnXxVx9tFKVVMuqx19Rft+joG2SIHlnQCdVgagUvo/0rTMcQPvqKNkVSZbkUfrP+fPShdsD+glh9HSQQT0G9b12yhvBW5/ZVGGvVdYxDaoOS22vp9NknvBCS6aMch0WA/jOeG+5fBySRMN2NpWkXs9nnvTW+v29co5IJA0tIgdUZLUTdUPanpNiORHNGtUZLo3mEn0yJcW8qQHMtJQ/AxyLqwbApZrLRXOR9erRKuu1Sgyn6mdKFC8/0d8F5pKH/h0s6We+Uyd/iLZvvd2bN6c5jWrZ2xF+QT6mxEcZ7G5CZGfYpeTSv1wcZPIoNQE/TXm1VkLBYho6bg4F/jf6PW9krrxRFHcBWPl/ykzfsm5PDObXpYSFh9U+Bo93Jcuskh84mybfA3Strpxk9yYrucdznf/Qs4G/UUXuBtL4hpltfAQPWq2BF4k1V+td/qCzGCiEA9t8gUBQCps+FQ/zlal8SLzgSUbMF3PpHgrFrPFBEzgUKK7YZttBi2hWkeZOwk9mvEBiQwWwgX87BwmDiZ7C40knk4Z9oepr+qnE8w7VMyG7LO9qgLNtdMDzIPFSEDx6hGdyFnZlYjZH8S3RjG2lf+U79pdp/EkUJ7bFYwphN0VdxrhYAb0og6LiNFw+dAOdekIFS5PzfIw0TL32MCq1RyI80zrm/zWXt3Ny1Vj7NiBBf+VCKw7PtxUc63m5jsfyla99M3ja7lvnnFv+nwkKq7VhRG6u/at6d4FHRIx47fHURqRLcNbVZEdEXORrIUxNzV+Dydu3fx58FKqCOiLOOHktHVG2K9bEf/MtAa6pvAabVf0/wFQSwcIHxyeoGIPAAAFEgAAUEsDBBQACAgIAFM+S0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABTPktCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbOVa3Y7buBW+zj4FoQJpUszI4j+VeBJsAgS7QHYRNOmg6EUXtETbysiSV5I9niAXfZg+w77APsC+Ug9JSdbYk8n8GEjb8cSmKJGH53z8eM4hlfHLzSJHa1PVWVmcBDiMAmSKpEyzYnYSrJrpsQpevvhuPDPlzEwqjaZltdDNScBCEmz7QS3Ese2cpSdBajBPqCDHNMHimE0UPVZTwY4TPuVxJHQiJbREmzp7VpQ/64Wplzox75O5Wei3ZaIbJ3PeNMtno9H5+XnYjR6W1Ww0m03CTZ0GCDQv6pOgvXgG4i51OqeuOYkiPPr7T2+9+OOsqBtdJCZA1qpV9uK7R+PzrEjLc3Sepc0cMIgEmDY32WwOdkqiAjSyrZZg7NIkTbY2NfQdVJ3RzWIZuGa6sM8f+SuU9/YEKM3WWWqqkyAKsVKU0BhLTCWTgvEAlVVmiqZtjP2ge0LwJSkUKyIkw3EsCKWcXC1kPOp0Gq8zc+6Vs1dObxbFEmYyq7NJbk6Cqc5rACcrphVMDJhVraBaNxe5meiqqw8UOoI/aJB9MlYWzKtH0yIXHVEmjmQUHXEedQb1A+PBqF5qP2irxHWj0m5MStV2TAxj2a+Ar1NmZ0wWoKYscyczQjxGnz8jEpEIHdkC+4JAIYR/FPl7EfUF8QXzBfdtmO/OfFPm2zDfhtFrsN0zs71xCd3eziG2X7NTDezE1ojPCFvtXUGR1Rs7/W3B2qrwVekKHPkCtw+V/XF4iXtaRO9kERb3osuWojHfDsqBmfaf++4NSW4x4p6dvZXkKisJv9pKSm4D7p6Z3ZiYRzc1UrD7LP47DGhd/2ANdgvQl7gtr4PhYEqNR507HLcKoXpu27aT3ZhFbVWksfMUCCMOK0lIWNgc4RgKaVcUQZgjxqGKFRK2lIjaRcQQRQrZdpgi5w+4gh/mFphAHGTZm9KvNEQZ4hRh50UYAhSQ80SACaHQgnPEoZMdHdthqUBMQIUqxEBB64OkXecU+kEdBieIYkRtXywREUgQJK0fw8y6N6Gs7iCUIBEhYbuCIwMn5h0Y9FCIWmtg4S3LOuvBnZt82c+KwzErlqvmEnbJIu0um3KndVomZ692sDa6brpraAQRaxtdfQS7FHwfjXM9MTnkKO8tDRBa69wuOSd/WhYN6ihA/L1ZpZfzLKnfm6aBXjX6qNf6rW7M5g20rjsF3dAuKRibVZJnaaaLU+CIFWEFoi5HcEGnSxG4bEdJyrJK31/UQBy0+YepSmjISSgIi/tPgC7aJ4qGVAIZuw/gXCfaMp7IEA87KVijF+2zKGQcHCcmhMecMEnbsc26t01vTG8RmlV20Q0qP9avynx7a1lmRfNaL5tV5VI+8FuVNev7YpYbh66bdEiekrNJuXnvYaVe1oeLpVXJazCZvS7zskKwJAkHJztry4kvXRurWt8qcm0i1yLq5ilL++c4Jq6FKye+dK1g4r1qram4MxNH3TBZ7ZwNCPc06/yzpY1NxVZF1rztKk2WnG1NtR1+Xi0mwLiWkpdl4kPJHI92SLZPOuugfD/kLksblUZ7dHRB7SZ0FJHN0TsGSqgNP1sGUhxSIhWEfRIrCdmbHDKQMgW8ZjymWBIGOd4XKOjX87dlII09AzH9xgxsw9QhCXhPkfv8OzNVYXLPnQJmclWuau9be//4aLyqzTvdzL8v0r+aGQSFd9rG5QZE+6ZbjVOTZAvo6O+30Gk7rX8DVf3d1Mwq01mYu12eB9Y9jYZM3rvtRL2pysWPxfoDcGZH1fGos2dcJ1W2tNREE0gUzsyWfWlWa0gz0mE/ML4GKxIb8gDIxoIYIL1q5mXl9nEQOGDRoTeg7UpXGcRqoJddv7lZwPYLNY6VxWphqizpZ+jdqjgDmArt9omg66o1R4WtQXaaUDn5CIFuZ3a3oMLjL/AX6Xw512532bJUX1jHMUDMSfupTNuB23Z1bjeUaJEVTsxCb1zkRHpSl/mqgZ05TFGx3Zl7zfrtsvMp0CXmzrnALczs1TTbmD4NAOiyT0CqywzZrqMGwvMZ7FJrl3c37bJ2Fz9kaWqKXltdAKnc1IBnW3pzESQHxi+NvusSzHcOZUCIdoLsVG2WFYxmxbQQfzCbBvrDg5Pg8a+rsnl+muVnpkC//7tCyQWoCiAVtYVnXeYXC/T4Tzh6Xi5QpVPYdKMymaP57799BF39oybL81ovFho6WRlNma9feslOm8tsgVykCS7rcj0lBkvyJpyIbsiJ9q6bvN0FfTUhkJ18ydzUU7wH9CUrYepmWxNeZXlKAj8ccKBw+X3Q5pSvdHI2q8pVke65oLrRVfPOxg1UOK/mTAUtjkkIW1bYfAuqJFNEYqeVYBC0BAQqCFoKcwzR7JM/7PrKsrsVxvi2GO8y+U48/gq89KDwspDgOJaEKsUiiu3ZGMDLGA8JA1wxPACsycOBlx0YXhbBXywh8ZKMCuHZS3BIYMcB+VYsAWb2cODlB4ZXxIpLymxeqyiTDl4eCdhTgWvAESVxLNTDgVceEl7YMkQEfGwLMabUOwdKQymoZDE4BhwrKh4Ovuqg9OUhMJTDfkspIvyWDOAlJCTgGmCXJrj9Phx0xUHRxSEmkknKIbYpQYnysY1SiHkqVhhgF1TEDwfe+MDwshicrMKQmQG2Efc7BaXCOGIKPAdhUhL8gJwD3sU3mTBCo6lUOqLJBCsWm5RHjOJJqqaUJqPX7Sbkl5kpYcddXYSzbHqDWflC2r6xZ0U+BHJ7hPPt4L5is3ErJKNDUjUKGY0HH+Uxgp3FLTMDZNb9ofT/Kkf3SHovJyDbAwLhzwz+38DcOVJAJ8Fpe55w+mTzFJ2gP/6F/oKeYAK/m38+IU/RsS3p06dXnAdMV4U7gOpxOL3RecD1OHF833OBu5++fOG0h1932nP9ic3pY70s6+cdxr7mkd5W/Aulr2H75wOA60lIInZ3dA+O0C/LFp0n/enjETrdVoB6rXB3DH8VWO2DgcQbHFV+CanuXP7e51PuSLi2XkW1TkVFkKlBEoFjipXz2kP/4qyw7w68FDa8u3OwfCPSXQ1sy7p7wNtL/+8Eec9v3xHXpLTnomkbVN4C7QMfV+ybZB21zNV4iIi3c9V0TRIvtBW1B6xdSz1eycHW92Hg3OPqANtjYffMsOWQnHEOz8U1zqH3ufjq03Lza+H71P5lULZY5lmSNbsTMhq+9HCvwdv/c/fiP1BLBwhfu61RWgkAACMoAABQSwECFAAUAAgICABTPktCHxyeoGIPAAAFEgAANgAAAAAAAAAAAAAAAAAAAAAAY2I0MjMwZjc4YTAzY2IxODQ5ZWQ1MDQzMWJkOGYzM2MvQ3lsaW5kZXJfZ2VvbWV0cnkuZ2lmUEsBAhQAFAAICAgAUz5LQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAxg8AAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICABTPktCX7utUVoJAAAjKAAADAAAAAAAAAAAAAAAAAAkEAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMA4gAAALgZAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />