Vi definierar och exemplifierar linjära funktioner och räta linjens ekvation.
Du lär dig hur man ritar grafer av funktioner och hur du beräknar k-värden och m-värden.
En vanlig form att skriva en linjär ekvation på är k-formen:
där k kallas riktningskoefficient och m kallas konstantterm. Sett som en linje i ett koordinatsystem utgör k linjens lutning och [math]\displaystyle{ m }[/math] hur många enheter som linjen är förskjuten från[origo.
Om [math]\displaystyle{ k \gt 0 }[/math] har linjen en positiv lutning medan den har en negativ lutning om [math]\displaystyle{ k \lt 0 }[/math].
Om [math]\displaystyle{ k = 0 }[/math] är funktionen konstant och linjen är parallell med x-axeln.
Två linjer med samma riktningskoefficient är parallella. Två linjer vars riktningskoefficienter multiplicerade med varandra blir -1 är vinkelräta mot varandra.
För att kontrollera om en punkt finns på linjen kan man helt enkelt sätta in punktens koordinater som [math]\displaystyle{ x }[/math] och [math]\displaystyle{ y }[/math] i ekvationen och se om vi får likhet.
Den här texten fanns där Wikipedia skriver om Linjär_ekvation
Till höger ser du tre grafiska representationer av linjära ekvationer.
Filen finns på GeoGebraTube.org och heter Ma2C exempel sid 206 linjära funktioner
En GeoGebra som förklarar det på ett (över)tydligt sätt:
När du hittat k-värdet till din linjära funktion behöver du bara sätta in koordinaterna till en punkt i din ekvation och lösa ut m.
Räkna i Gleerups eller Kunskapsmatrisen.
Filen är en översättning av en amerkiansk GGB. Min version finns på GeoGebraTube och heter Räta linjen k och m-värden.
Skriv in en egen funktion med glidare för k och m i GeoGebra.
Leta rätt på knappen för att visa k-värdet som en triangel på grafen.
Undersök med Geogebra-applet: Interaktiv övning
Linjär funktion - formell beskrivning.
Några elever programmerade denna övning i Javascript. Du kan säkert göra något ännu bättre. Visa oss i så fall.
Räta linjen by TE12A
Instruktion till kodupgiften finns här: Räta linjen med Javascript.