Algebra och modeller

Från Wikiskola
Hoppa till navigering Hoppa till sök
[redigera]
Mål för undervisningen Algebra och modeller

Vi ska lära oss lite grunder i GeoGebra. Dessutom ska vi öva oss på att skapa uttryck och att använda dem vid modellering.


Uttryck och modeller

Matematisk modellering har använts för att lösa problem, inte bara inom teknik och fysik, men även i biologi och sjukvård.

När vi har ett problem som vi kan beskriva med ett algebraiskt uttryck har vi en modell av problemet.

Att arbeta med modelleringsuppgifter i undervisningen innebär att elever utifrån olika vardagliga och andra utommatematiska situationer skapar och använder en matematisk modell. Det innefattar att tolka resultat som den matematiska modellen ger samt utvärdera modellen och att klargöra dess begränsningar och förutsättningar. Modelleringsprocessen innebär ett utforskande arbetssätt där elever prövar, diskuterar och justerar sin modell. Det är ett arbetssätt som leder till ett aktivt lärande och ett mer produktivt sätt att tänka i matematik (Lesh & Zawojewski, 2007). Genom modelleringsaktiviteter kan elever även på ett naturligt sätt komma i kontant med situationer som visar olika tillämpningar av matematik och dess betydelse för andra ämnesområden.

Skolverkket.

[redigera]

Förbered dig för GeoGebrauppgiften

Det är viktigt att du följer instruktionerna till punkt och pricka. Fråga om något är oklart.

Skapa en modell (på papper)

  1. Om en rektangel med sidorna a och b har omkretsen 40 cm kan du skapa ett uttryck där b skrivs som en funktion av a
  2. Skriv ner uttrycket
  3. Kontrollera att ditt uttryck för b stämmer.

Nu har du en modell som du är bekant med. För att förstå den bättre ska du nu skapa en dynamisk modell i GeoGebra. Följ instruktionerna på nästa flik.

[redigera]

Rektangelns area

Uppgift
Rita rektanglar

Gå till GeoGebra.org. Välj Start Graphing.

  • En rektangel har sidan a och omkretsen 40.
  • Skapa ett uttryck för rektangelns andra sida.
  • Skapa en glidare för sidlängden a.
  • Skapa rektangeln i GeoGebra och dra litet i glidaren.
  • Vad kommer du till för slutsatser. När har rektangeln störst area? Diskutera med en kamrat.

Detaljerad instruktion finns nedan.

Detaljerad instruktion för att rita rektangeln

  1. Gå till GeoGebra
  2. Skapa en glidare och döp den till a (om den inte blivit det automatiskt)
  3. Använd verktyget Sträcka med bestämd längd. Skapa en sträcka med längden a. Nu kan du variera längden med hjälp av glidaren.
  4. Ändra egenskapern på sidan a så att längden visas.
  5. Vrid sträckan 90o genom att ta tag i högra punkten och dra.
  6. Från förra sträckans startpunkt drar du nu en ny sträcka med bestämd längd. Men denna gång skriver du in ditt uttryck som motsvara b
  7. Skapa den andra sträckan som motsvarar b
  8. Förbind de återstående punkterna så de har en rektangel
  9. För att få fram arean måste du rita en polygon med hörnen i dina rektangelpunkter.
  10. Markera hela rektangel och ställ in att egenskaperna för att värdet area ska visas.
  11. Dra i glidaren och undersök hur arean ändras.
  12. Vilken form ger den största arean?
Viktigt
Dynamiska modeller

Sidan a var en parameter i den modell som du skapade genom uttrycket 20-a för sträckan b som funktion av a. På det viset kan du undersöka rektangelns egenskaper vid olika former.


GeoGebra

En dynamisk rektangel med given omkrets.

Film: Skapa uttryck, av Håkan Elderstig

Vi ska använda uttryck (och formler) för att skapa modeller som vi undersöker i GeoGebra. Nedan visar jag några exempel på rektanglar som skapats på olika sätt. Till höger finns en film som visar hur glidaren används för att ändra formen.

[redigera]
Swayen till detta avsnitt: Algebra och modellerk




Läs

Theo Jansen

Att arbeta med uttryck, koefficienter och parametrar som vi gjort ovan är ett kraftfullt verktyg för att skapa dynamiska modeller och konstruktioner Titta på Theo Jansens Strandbeest nedan.

Exit ticket

KM: Exit ticket: Uttryck