Integraler Ma3C

Från Wikiskola
Hoppa till navigering Hoppa till sök

Intro - Primitiva funktionen

Gissa och öva.

Fundera över det inversa sambandet

Öva på OlleH

Flippa = Gör detta till nästa lektion!

Till nästa gång: se filmen om Riemannsumma


Intro - Riemannsumma

Integral - Riemannsumma

Kan man tänka sig någon trevlig frågeställning som ingång till integralerna?

Börja med att visa Riemannsumman för att ta reda på arean under en graf.

<ggb_applet width="930" height="551" version="4.2" ggbBase64="UEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZzVXCTiUaxtWBmOfGMnEGFtkyxLZGVKWspbGLkvKNpY0tnQa24gYynJsoRkyM2hkGvs5lpghFRqUJQdZy1iPnX/8//V/1/V93/U+y/0+7/O87/09X6qdzXV+HggPGxsbv6XFVQfWm8a6c4CcrKeEBYXKxiYItLwKvxX1/XdxbOgthkTP4TvNSMKQVfHiQz0fV/3fo+0OPBmR9Rqjem9awO1nRTZfDWJsSBkmhE5MqlqNFAChrtYp0yWbPNcu4w0R8gaekpLtAudfFu7HgnyEhE3/YOPe1frxrmSiuS9kNGjlAop5GH/v0/jEvk7jt9ZXrfMoj+2zqRqHh4cOdnYwdnZ2U1roCH2yNVYF5UG9ui94WVvbys8P7yIk9Oxwf9saiazdAJzqyZCYETFJbo2dnZ93XR9XAIqh7OqXlpdfw54+fPiQdsfzMV7IQzjwadq/e1vLk36XTciEioruuldP5QC6T45aZufmIMzGEjDhBuRXX8clO9xfpu7u0oaGGSKn1L3NzBJiHm8u2FcRiY61rq6u+JYWt97e3lvPOK9niJM3/TVr0CYCBzEvX76ktT3eTz9TaBFG5nusj1lf4382xausIvLgwRlL6w1SpzaJPYRqEV5nEduMPJ+REhX1PEJtDp8H0x97dynDXAMqqixYOPD1K86hFJaamrqkNZ3w7BnP0LEq7uuTNHRiQ8JDFIpe5Vjp61X6g3pKVK4NlNcnw9NmgPt6Ky5BWldXmpsbqtu2741/+yVCaqY17PywDMccXvjvNjExaXNz6YaJ85m8uVzqHETOOb5BekNCdoLqsD2Ix9tyemYmJaS3amadKgg1OCf86gwH+Zz/pyJ70c8InD6zxbHCplhv7lhmWoDotOxihZ1oRhGDLVgGDst7XPu3l1qN4ogBP7aMcqTLAkutYzhjxC/5dNuNJ0FIZMBztJPgRxUZIAGkdWdPlYhvnlBJrU51+Ooou/V4yyGaPNgc1DKogBe1at2Xo8pZxz5pRrlGIxtnH80TRnpUoY7WQYENg1Pu6F81QZT/58gbuuBw2lL8ElBPXoB1KWHITxe+U4gBzlFtdvh0pOZLWYSTOyE7MRcgd32IcYEZ34Bdm2y4KckMiLAMsyW7+N9g2186CFRl7EicoAl4Pjmk/Bwz7L6BbWkxuG0dtjKuu0U8k56RgcQx181zajz4PdwIC9VTtQ03MUkBE+rCuPr6WwQiUQwnbB4R8c4K7AtQB4YJ9GRKZtI33t/w/6C6mSL9HhCWItITg/AAkZBIZB6vqCotR6nEhXR0BP9Lbk8ueSjrFnNoMDx4oW/VuLSW2WSV9YWhBTM0FOcXuzgxMeEg3jkR0X0bO1RpG+vp2RQFV/kRtzH+5UgU/3b1AGtwmJ07XOZgbl57WdvDfhmrqHTJyqxThIJ0HdOiCIY2j+HfvLm+tLyfPF3KOxlJpwdPzmBto6NrZ+ceEUdo7NbFlR7oX79UKbVHzd0zyX0JO6c3EIRhyktYf7//7dtqDkgk1SXvxZDcGBWlCC8oqCFsWzQshLX7ODtGWAab9X48cHLHjnJNNaSnIxnxozUj/5h27ycmns0R9PAxzO5jaG8qjcz0O8rb+nVyIOP3mEsnc0QRIu3jMvy8L1j01F6562UDx6iYyISSOOfAiVdFMPZBL8I0wYlqapUwX5JJYLQyX2IdCXaOK3QrYIdikPXSB6nN3mNxb+HcYhB0oOAw4WmjGaD9HLaoSJxhgsFRqRRKFb4k1f6Yp8y6JUwiF8g2MGLNFMTmTcqrqPTrF8rkbm1txe/76P97fXK0IrPTSEVFRWqj4xGps/RCcV7Jqgkz4bCYpzu69C4WnW4Koo6puFJDcsrLpZGo7Y8fb0T+0+imKjIu5v8N6JZXXKxCoVCWKJOcm49kgflYbKnqfT4eAoGwPiY5tgYdC4Xu6fAZfyBBy9Y79n+PUa39/ef55/Hb7Uc2gIlk72olfR/QGS13/nmODKPmR7/rfh5/gBWnQ8C6Pq0fDOY44KuBj9jEQzjYpoX0L8eY8yrZSgQ4w+0c8a+4vcFXufq7YZC1FIF8ctdlXBPCl48UySZ+7iPXXNWxwHsOToZJ7ZAIG0bi4apklIdeiCmpPOHxjK5OsVmKwLeKfp8bHO31GvljWqG0aoGC50+RXn+7IRBvstUtrq8S2af+ZtNVs/X5khHcXQoB8NZHnmCwzXsbGLMQxA7+GK12QX0EtH+oMDaYkZCFwDdCo7sHwZp8H8USQIV/SBrLG9R1rKNDFWq2TJKSipteIKxAPstavRsY282U4LjqtJsYrvRT+i7jCRyb3SPt6CjA1J6OD3EvtF2XWyJfP0ld9CpXMwLSHMDm1jDK+bYr1keN5Po/4zKXH897Fh+bcsyDsgC1ce0WcB6NT+bKE7ZpCOL9n/UF+pyLvldRgvrUaDuQkLrCd701OBGcOA5+eJcagRLiMb2WJAwBXASm6qyEhlOucEhJwatzHNOcZi4Au3GFh3F6s/Ob5KmB0vzMFmgsXDtotDSZ4l0cpkwly7lRy5eDm6TOtCZExiNqJWM8nZwqhNTvCMhrAV2ugdKrTdIiY2KaFMcgrm8jrRtCzK+EsDdFulLRgXA1QWGc9JxIddT221C+DqfNNblhaL3YOzTgvL0Fib+JHBG1dg6ILhe8tvu8EsY3eZ3zgkdoTDUjn3v9Z54nARbbUDleYA/+ErmpBx2oXVOiTRnG2eG+1/nxGmMQGHjHh1HDSQXgrIn3KtTI2dm54s5fjtiws4n57Csdj4pHnqGx9qLVv4w0uTmkznQ2JKCxoNLszlQfAwUgt9KK1wBLDwrjas62A2ncGHjmbqkAvDsOh1vseF2L1TfiOPFOcAqX78dYwGkYE+p5U7gFpqEzxPYVHtYF3hyqB3JIcWpEaOJxdYmaDEeQUPrFwAqaYe14p2AHAT0lVQL2Pcgn308mGb7NlUy8zdpzBvK2JTjYDBshQretc5r1tXyYnDaHdQ2XAb1ubPxTEuADEgKeDjdi5KGxbG06W0m4Faucr/xVB2qseH0ZPcRZhny87IfPR86+/RBPqxuzKWZw2p7giPXaD2gWYdpQA7y5O+gy7G0PSklIGXuzssxsW77ExVEGs+FiNE6GyIIT0SDJN71by9dM4QrANXCV081XMObnfIXs7GlrWyNLlrA9rqev8tB0MPzOXt9qBy/LQ+d8Os+td1kNbld6TVgGCevM5I8OIB7TOK9nJcX6qL17npUwcGLUKIJsD3XZwR47vlJg5QVaoVJ4obDy+JYvQ9GzQDMFbQdC5890pQqHBxwdFPaxkDAv/j4HYUb0/ogvRI/eBPE1SoiL42Bn/vgmeMhpaA/a5x789u0ii2DE7XVOOwW5S126+Sfs+M9j3Pz08IN/g3i8r8DtVFLlJ9YFhIxqmzxyKJrxFxlc//I/WXMEdcNslJ2qUs+iI/VwMHAX3Sucl/m19GT1n3XWcU/k6QQt4sF8P54VN6ZhY3z9oJNqfXTw4GiGlhDpylpNl2UpktGbo4TfqdXEr5gM0C7F85jCfylft7J6VjnzTywzCVXmyGoYUEbEwxvZVFniEhLZY8YyUcBwjcig6MbQHXKlfI3NxhyrrTCF2z0vNNiQsrSKv1jHW8xKRDMa2rhEr2tAyGQ9PRk+bSSoPTJQVx8YWcSyxjzTd7998lvv9RGepU0ntUXJhN74bw3BAB8dt0VV+uOYuiKDVfqCXykrUlXY8JuqqrUWSyuN65ysubzFJioV6TmzxrTUEyjpupjlgOh/28dmX/hXxOpBlsA65NMnYMIAc8LsrK/uwXhR4XZVOQuJtjhU+XP9Z997SDiRiCQSCLJKSn3bss6bHVrL5RWwTyBAOOzbosDpgR9Pjvzrpv/xtP6xxGhTHK8sOfH+Zq682eFODSkOKtqK3X3zt0hrWgHaDotgv02d9GjIeo85ydcVOBRlqJrGbHP/pOy5Uoj2bz99kjSgnphqTGDW7OeDzlGPr6wyIbIIx070OcNCv88lhkvq/pMPjNWdL5+ELepLn5Nbn94c8+sRzoy5trfo65QgyVKQFYABlaE9ocFh9El/aLrH/4SytGlB0b5n9SJWAsxza/e1d1jlEOJFe2mfubzz4XDJif7nVnOWcX7ySRG4s8OUzXLj394SgBq8mTUhK/7qyT9pCv3hEAjEN3zcN/qwTdLiWJ8Z1VQm019sDcdsAC4SLmbj9XN7k+v5lzJOwdXkGVnRmc+ZSTZwBRqCFz1J0d2PwDW9d2nt2dSzPV5+4Ky9IVDlpjOGoppAmEsuPEKF6NJ97d6f8a//8b4K2lalHkR8kqjbG7B0aPFNfcgnUvZ9MsqsQDJf0d/KihRZ5ogdbUv4ymBUkQXG3gc7WovQMtD3DV6HrnBFyBkpeYgUY4eRzpf0525mG8Ya1x+xwvC+g83NPftXzsK9U5ZYNTVa7bJ5fpFBtAM+FDDAngWruvCXomeJ9RObR7++S+3u7lqNizKP2ki7Q+5ZhppFaKwFR1jzxJVgfZM8pFvXQleK9J9HItdB4wMDYZ3qo4KiBgSEaI3HAvU3JbiWPtzp2sp0HHScpegKyy5eevHTy61IPGbXz1k3uJx0+LvaQeOYPMA69zTgg6Cgl0+fnmrkMPNWlzCO//mcWwhQw5sbHhGR0pZCUQz+Xr+YfFk9pPzgMJNKX9ln5mUym221bxbIIo8OYqf3+gXlInrBlq8MnI2atqH0pm357K096d0fTZGKObUI1R7JNs/eZG+e1hoWSzADi9uc304lRwbfJQUWaCmVz6B/C9t4tGfsd3e1oKuJaZmCy/otzjzbLm8dPVIEJXPRaPQXCgLUw2f3AbLtVOTpVqce+/plkYJYmMe9YuH7AQHr3Rb3Zv3O+n8u0ZKTjBu+9zMp7uMeabUvPeLdIAoTpb/6fX0SnqxvZ9vi5aSSq66aCnj3iWthvqFwC585d6zh9NLLFKhpssbq0xgvW9bX12/Zf+ezcyVIChq59Pb13dwVyIQaKr56chS98xu2U77qZTnTxXsPWD6TbaG+HPfHmu7Ka47wUv579VNxikpKN3Xl3XTuFQkrqKjkLC0FDH3qU/6oV2trfHjZ10hc0JTWH8A6F1LgRBYJsSiZRX+mcGAZi/RYxGB6QtLg/4tYElNvG9DMKD9LQUMBMuTIQ44h3Bx3z6SxTC2iDiRzKge+FmXST36W2SzNba7WmHqh/wNQSwcILsf2/S4PAABBDwAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfcHl0aG9uLnB5AwBQSwcIAAAAAAIAAAAAAAAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vr9jts2Ev87fYqBDih273ZtUZ92aqdoeykaYNME3b3icMUeQEm0zFimHIn22kEf4O4p7p8ccE/QF9g36ZPckJRs2bvZ+GOzaNIGWVMkhxzO/GaGQ0q9L+fjDGasKHku+hZp2RYwEecJF2nfmsrBacf68slnvZTlKYsKCoO8GFPZt7yWY63GeS3S6vhqME/6lk/tgetE0WlEu91Tj8TBKfVIcOp1BoQOWOIE3a4FMC/5Y5F/T8esnNCYncdDNqZneUylnnMo5eRxu311ddWqubfyIm2nadSal4kFuHJR9q3q4TFOtzboytXkjm2T9t+fn5npT7koJRUxs0BJNeVPPnvUu+Iiya/giidy2Le6LooxZDwdopih7VrQVkQTlHXCYslnrMShjaqWWY4nliajQvU/Mk+QLcWxIOEznrCib9kt0nV9r+N2QrsbhKGHqswLzoSsaEnFs13P1ptxdmWmVU+ao2eBzPMsompG+PlncGzHhhNVEFM4WASB6bJNm+2awjGFZwrf0HhmuGdIPUPjGRoP9TDjJY8y1rcGNCtRg1wMCkRvWS/lImN6PVXDSnpygjKV/A0SIz8LjMpx4Sf2iWfrPyNzQ0DS4CiL6Y4Ma3YhCbZj5xzCzq3Zkc6GdM472HXu0Kdhv410xG+w8+0T/V//3VRn8NAcXWcHjqZ+GMPAe2gRPbsbPgjPXrsOAb3K66EcKtrKVCUblyoOuF3wu8qdCfjo80GI3usD6WIROoBeDsQHz8cq6UCgyhDcEDs8cKEDio64oJ3e7+CPF+rJAvBxMtUaYqwBgow88F0gOlZ4gBECdLzB2OO4SOH74OMgxZ44ago3AC/AmtsBD9eoQk1IkNDFgVhH9g64BFw1mITgBBA4EKpwRTwVxYKOWj3O6kBgQ0DUnBiwMFiZQIVDOuAqgYJKY1xMpnJNS/E4qR9lPlnCgdQYalcB3YTetXj/qJfRiGW4K54rMAFmNFNerxkNciGhxtExbWlBJ0Mel+dMShxVwis6o2dUsvm3SF3WvDVtnIvyZZHLb/JsOhYlQJxn9nLNeUYaz85y1VhxGx1es8NvdASN5/BWvjn2wLRkyD8vypqcJskzRbEKf6jJFyJbfF0wOprkfF2MXlvvpj02jTOecCp+RHtVXJReoN5cdTSuN1ff9eqF5EVyvijRiGH+D1bkuAvbLYcExPNwV7LtQG3DC9Pj+UHLwzBL7DDwfc9XoTemyvuCsOW4oUNI6BPHdwiG2MU7urqGMZst8aFzthQ9LZRvV2KryrPy6zxbNWnhv6ETOS10noReXCiRvhJpxrSB6DbMOOJRlM/PjWW4Zq6LxQRrtllAlGqlA8YGx/eRoCojU2oatbIllQpxqSkiXVTWxpMlCek6mkaXkSk1FZqvWV0lLKklJXbNiZc6rNnWmt9o21cpzFRweVZXJI9HK2EV/ffTccSWFrQ+JbmnKXvtDQvrjVghWFYZNII5zael8c+GraN5v6Ry+JVIfmApht6XVEVoiVMb0tWKExbzMQ407ZXqqEL2b7hU05qwtGC1hJnOTY1ida/dtOobzXqqb4t8/EzMLtBsNpbaa9fy9Mq44BNlnRDhjjFiKwNMeElxw0ma45SvohSx2lhQkVIp8QeOOa8Q5XQ8xtT9+pcCtyaJa0efKNDDp3KYo8FcDPMxLeEMObHBq+u3BSbXCYYqRESnx3kxKoeMyQs2l0CjfIY9P16/zV7B5Pq/kGd8RKG8fiuxE/8UM4a5OqDxsUwhrpfHMjbGDBekNn8xRRoeL+0g0pxQE9NKWeowodWljADy6BWG4tX+aQatMMP+pfnb2vhtbfr4S7PJkOqcu3ICumDFGiB6tud5UnEmNUxoBVqXGJYmZgLAHYEZW5aVF8MEJ9RBoIFgJet7paabUtu/B6nFptTO7WKvBYr7lPrFYFAyCXMUCcPoom+dkrt0Umbq2AZjLvQhYUznasnILSpxw5Z4cMVYIFYHV7PuasMjthJO8XL9jnpCdq5+GPB5w6PREfkbDF/rsWgVsSUmEyM8DJZ6DUsc1MN3PEmYeCeEewE4nxTIS02idQJIZwG2Ynk0P4Y+ppdtTBf/DPN/HjnHtzj4YCp0JFoCOLDuE2B7S7O2DzXrfTBoajLOMfSKBIQ+D5yz11Ombh9W+SnFTO+In8DgiB8fo4SY7HEsHBUdgGKGF8FfgLTsp6eYFlDM8o4iOAV6jPoXlb6msp7orOJfcb2BSsZLudQ4Em8LCe4tCTf6U0lgRRzDr//+Dygq+PVf/4N0Wb2Jo2+A1Gf/yFT3xXIfn9AJm0rD1vJ207raoE/3Q+9lni3SXPz01Az76YycAL88gaP50VqTwvHy+AQW682Xx8fvprVv6avb1xsv12yHGNu5xUKcXSzEOdRCblpCnebuv1X9Vu3gnKUaj/3tYFsM3V0wdB8Sw4/dl7fF0Pjgtnh5u+Dl3VtU/kSAW1dWlOcZo6u8It7MJleS75ps7KudRj5pd3WGV98C3a68mE40aroND1J4bsNpq7ManKvD2kEb0W3GurgtBm1uIrr1ITcjfxfH8A90jPRd6aVje5/sZnSYLWyLY7ALjsFD4vgbjmsfDMfDNqtwFyzDP7C8FUsN2uYpL1KnvKg+5amqfXxD/8nd6i+rqWsFJ+8BYP26/4ER0Degpb78aBHH11ujvg55o3TotwLH3x8q9lqYIaW5MObjScZjLpcazdRR/plQd7xM30XcvBUeMTZR9/EvxEVBRak+blhPIvbBeN0tz5hI5RAfL/HYrvzzTvTZbuizQ9F/kGRxZQZOq+PY7k1T8FrEJv7HZQ53p6XpZlraYLPfJdju/tjMS0Nz8+jfiVMzL/3u+pf0XrLS5zzR8fPGmWr/dKOzyxbVOXCL4nffSmpYPsYt6pAjROd991a70N7/saK7i310H9I+fifHij3sY1tszbvqra+47T+8/+HQ3e2gQXZ7WXHo24pPFckt0tDOKg3tXL4vBR3uloIOD01BPyQuzcyzGzqBTjE3U89O4Dod8gnlnvzec8/doWjmnoFWud/dOvd8ziWaoxhJ883KWg4qbuhi411137og1bvqz19Pc/nFX6cwogKu34qkoPUHMBoE9VwgxwxX+vmfiP1FykQ+1l+xUJEyEAsKM/U9DBNmJdSQ5fEQIv3xy8h4SV5QpGnpTv3zdM7GE5bBY6B9W7fAzX+Reo9um0VqqdZhlWy+crOL94W/BsYf4gX6rd86gMHXMXfetrsJTbv5TZL+RLD6kP/J/wFQSwcIYyOfxIkJAAB4MAAAUEsBAhQAFAAIAAgAJKDDQC7H9v0uDwAAQQ8AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAAkoMNA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAByDwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACSgw0AAAAAAAgAAAAAAAAASAAAAAAAAAAAAAAAAAM8PAABnZW9nZWJyYV9weXRob24ucHlQSwECFAAUAAgACAAkoMNAYyOfxIkJAAB4MAAADAAAAAAAAAAAAAAAAAAREAAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAANQZAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />

Övning Riemannsumma i GGb

Uppgift
laborera själv i Geogebra

Denna GGB ger dig möjlighet att flytta stapeln och att testa olika funktioner.

Du kan ändra på antalet staplar och se hur det påverkar beräkningen.

Här är GGB:n:

Vad lärde du dig av denna övning?


uppg 2

Testa denna: http://www.geogebratube.org/student/m11330

Hur hanteras negativa areor?

Uppg 3

Man kan skapa Riemannsummor mellan två funktioner:

Newtons Integralbevis

Mer om integraler

ProofWiki

Mekaniken

Jämför med mekaniken, sträckan är arean under en vt-graf.

Problemlösning med integraler

Ma3C: Tillämpningar, sidan 229-232


Derivator och primitiva funktioner i en behändig formelsamling:

Fysik och integraler

Stencil kommer som pdf snart, dvs när inlämningsupgiften nedan är klar.

Uppgifter från nationella prov

Här är en samling uppgifter med integraler från gamla nationella prov:

Du kan printa denna! Integraluppg. fr NP


Hemtenta

Uppgift
Hemtenta

Du får välja en uppgift från papperskopiorna (de som ni lämnade in gruppvis förra veckan). Det behöver inte vara din egen grupps uppgift.

Du ska nu låta dig inspireras men skapa en ny uppgift av samma kaliber som den du utgick ifrån. Det ska alltså vara en fysikuppgift. Det är förmodligen samma fysikformeler. men du väljer en anna problemformulering. Uppgiften ska innehålla en annan (gärna knepigare) funktion än i inspirationsuppgiften.

Nu ska du skriva rent din uppgift i Word och på en separat sidan gör du ne snygg lösning. Du måste fixa integraler och bilder på ett snyggt sätt. Din lösning ska hålla en sådan kvalitet att den duger att dela ut till eleverna nästa år eller i er parallellklass.

Kolla att du har räknat rätt genom att använda Geogebra, WolframAlpha eller liknade ställe. Använd med fördel GGB för att skapa snygg grafik.

bedömning: Det är både din kommunikativa förmåg, din problemlösningsförmåga och din kreativa matematik som bedöms.

Deadline: Uppgiften ska vara lämnad för bedömning om exakt en vecka.


Exempeluppgifter

Uppgift
Fritt fallande fel

Här är en uppgift med ett facit som innehåller några mindre fel. kan du se vilka?