Funktioner 2C
kan du rita en sån här? <ggb_applet width="681" height="450" version="4.0" ggbBase64="UEsDBBQACAAIAIOsdkAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAIOsdkAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VpZb9tIEn7O/IoGnyOpb5KBnIHjxNkAmQNwdrHYlwFFtqgeU6SWpGQ5mB8/1d2kROpILDsxPIGNKH0Vu7qOr6pa1Pjn9TxDK1VWusjPPDLEHlJ5XCQ6T8+8ZT0dBN7Pr38ap6pI1aSM0LQo51F95nFDqZMzT04mVDDBBn4QsAFnQgwmTMqBP+WRmiR0gmPqIbSu9Ku8+DWaq2oRxeoqnql59LGIo9oyntX14tVodHNzM2xZDYsyHaXpZLiuEg/BMfPqzGs6r2C73kM3zJJTjMnov798dNsPdF7VUR4rDxkRlvr1Ty/GNzpPiht0o5N6BqcPQg/NlE5nIJMIhIdGhmgBClmouNYrVcGjnaGVuZ4vPEsW5Wb9heuhbCOOhxK90okqzzw8pIxJn4SgniAIZShAHUWpVV43xKRhOmq3G6+0unH7mp5lyT1UF0U2icyW6K+/EMUUo5emIa6h0EjplrCbw8w11DXcNcLRcPc4d6Tc0XBHw5mHVrrSk0ydedMoq0CFOp+WYL7NuKpvM2XP00xsxScvQaZKfwZihsFPnM5hHuOX5iPhw83CqC8k6XCty+WJTFuWgoi7s6QPYclalkSSfZZUHJFSfkG57gx3EZOIjmaBlf1nP3scGT2Boxs/jKHkjyLieNQiZdyAA1UzQ9tYslbzysCFhUiExusJEgAN6YOTC0RCaHyKAAyICMQFDEmApGl9xHxY4IihABk6wpDFhgjgP+7bzSQSsJmZ9QGSiAAjjgRDxEKKIwASsrAEiFIGFEIgAQ8Z9oSaLZhEXMKIBYjDGQ0ifQKEDB6EMbCniBHEzMPER1QiafYj3CBdBubosCVFEiNJzIYAagC0AzPQB4gZaWSjLp0vlnVPRfE8abt1sdjYAqghHG2jngtPvaD4YpxFE5VBnrgylkRoFWUGEZbRtMhr1BqRurm0jBYzHVdXqq7hqQr9Ga2ij1Gt1pdAXbW8LW1c5NXvZVFfFNlynlcIxUWGN2cuMtLp082pYcA6C7y7IDoLstP3D/ItYAUtKwX8i7JqyaMk+WAotqEBNPlbnt2+KVV0vSh0X4zxyKacsVrGmU50lP8HnNVwMXpBbQay0arNQJzR9iBFmVzdVuDBaP0/VRagx5AMw+6fh27dChW0vwLoq+LIYI+H/RUDzNsja4F0vNVqY6JorbbSpqWBdmfwoXpTZNspq4CLaFEvS1s9QHQsjVjneZop6yQW2pCa4+tJsb5y3sHcXp9uFzDC7gST1CoelUY2UE/atBPXWhpztA0VtjTYUuDW3XSyWSchtRS2nbjWUoH/uqM1opJWTIJbNrqyIQ17DXDacGW832T6Za7rj+2g1vH1VlTzwK/L+URtfKi/J/lWe45HO042vlZlrrLGp8GYy2JZOYh23D1RsZ7D0C00KomMuf4NB3CziUpL1R48s5WZU5hdxV133Zu2W12WxfxDvvoEvrBzgPGoPeW4iku9MD6HJpAHrtXWqxJdRZBGku5zBoQgemzSBainNqoBeC7rWVHa4guiCrQGe5maQ6WFaute1kM3aj63NZzRJyomf0Jg2+Q+t741GCwfdDXrlFG2mEWmzmuEzqJbVfbUYPf7pUh2lQO6txIAyhfOtgulnFu480JnAdtZNPWiFGi7Quszb4CHMgBEG/am89mV8K6GNcIakPUis5vdsRS4j9PTVzT25p+vMTIkvFGYz7+JwuJiPo/yBOW2uLnQZZwpb5ttI2w8DUXEqM/pZlm3C7HbrNliT/vg5zreaDf+ivY78h5TP76/8reRsoYsfg03lcpWz3UTuG3nXzpJlK3gXCbRqcpXcFJIonAFxM0F8xY7/uhzO7Mm1pfNGmmmPpOOacDspV6j85b+vKU6h+w/oEMWEtLJZOBj56zhcc5bcJyLFjDucP/PnTyVi62mttFTHd/Dvm+cfc/37JucYt/k2b6H7UuGXAZ+v/Tp2XfgUN0YGHD9AAN/yGtIrSDTjo1jZ+MEGrpRQMfUF182dT+QXtwrkJriLXXNxDX3NfY2HuIh8QPMAu4L36chY1La8EiHNJBESsp4EPjSD9hjBcuLY2BSp4BJPYPpIJjgDsEpFcwXlIUSC7YbKwcHPcJC64BPfAegJc7+ygGN7rnB21OA9vbJAM1c3npq9RucMd7T6aMVJW+dni/2FDw9BWfTZ5wdxJkckgDLLc7oHs4OOUQDsz2X+H4wmx6D2btTYPbuycCMDkPR+1ZDNNX+t7kd3QFX744V++kpuEqfcXUEVzgQ4gu1/uCQBzSV4YMq/7sVhvtAujwFSJdPBkgYkj0JJREU6gUfQziyQDJalL3oRB8LWJfHCsPZKcCaPQPr2C2aB7JTGVK5Xxnuu4RB1gGX+H4JKz2Gs/en4Oz9k8EZHRLcVaq/gRnu6tQPHwtm74/lr+tTYHb9DLMj9y/AF+GScl9iFvLA389few7RgGzXIR4Ast+L7DYt8sMR9r2DmClkmLsncHctF4eib7MVaerJP4h7OrUdeF7ZDuyQ2A7sEduOPPOir0HWHbL1mQ2n+5r4ZHckglmHFGTPI8kpHnn8C/ZKpWa0Pcgf5H7I+cJR7x2bjJdL3P2jvqunyTCgvQW/CU8CLjIcUxaEPCRhED4AjzuOreeLTMe63jhgZr7m32QLXeT7L7iulVqYN4u/5Z/KKK/Mj5ccTefF2R0Nkz4pw5Ch7EWD9iVQILpXSuqswsGKkJQJ9bkEqwQ/jE3UE7OJ4LtfmbpUDtG8E9CFu4oKc82nP6BVkqdklb0Ihl0AG5gI1qCDCEy2MevHCVnxUzLEXsTa3ifF7tdgNpNIX0gRUswoDymR/IcxS/SUjLITskiTR/oRS7qXP3jIQp92bELEP8goo+6vRuyvs5ofGr/+G1BLBwi7UrqBaAgAAAUtAABQSwECFAAUAAgACACDrHZA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAIOsdkC7UrqBaAgAAAUtAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA/wgAAAAA" showResetIcon = "false" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Funktion och graf
s 146
f(x)
Lösa ekvationer med grafer
Definitionsmängd
Värdemängd
Andragradsfunktioner
Parabelns ekvation
Brännpunkt
Styrlinje
Andragradsfunktionens graf
vertex är kurvans vändpunkt
nollställen
positivt före x2-termen betyder minimipunkt
negativt före x2-termen betyder maximipunkt
symmetrilinje genom vertex
Kvadratiska modeller
y(x) = ax2 + bx + c
Digitala rutan samt detta avsnitt sid 160-164 ersätts av en Övning i Geogebra på Vertex och faktorform av Malin C.
Överkurs: Andra kägelsnitt Av Malin C. Pröva själv att konsttruera med hjälp av mittpunktsnormaler.
Överbliven provupgift (svår)
Bilden visar en kastparabel.
Tänk dig att kastbanans högsta punkt är 35 m.
Längden på kastet är 110 m.
Utgå från formen för andragradsfunktionen y(x) = ax2 + bx + c
Gör en matematisk modell av kastbanan.
Exponentialfunktioner och logaritmer
Exponentialfunktioner
y = Cax
växande a > 1
avtagande a < 1
skärningspunkt med y-axeln
a ej lika med 1, a > 0
Linjära och exponentiella modeller
Logaritmer och funktionen y = 10x
Logaritmen för ett tal a är den exponent x till vilket ett givet tal, basen b, måste upphöjas för att anta värdet a:
- a = bx
Logaritmernas uppfinnare anses skotten John Napier (1600-talet) vara.
Texten ovan från Wikipedia
Vad är logaritmer?
Ett praktiskt val av bas när man använder den decimala notationen är (10-logaritmen): den exponent x till vilken man ska upphöja 10 för att få talet a:
- a = 10x <==> x = log10a
Andra beteckningssätt för log10 a är log a och lg a.
Räkneregler för logaritmer
Sats: Multiplikation
lg(a b) = lg a + lg b
Sats: Division
lg (a/b) = lg a - lg b
Sats: Potensräkning
lg ap = p lg a
Logaritmiska modeller
Aktivitet richterskalan
Ekvationen 2x = 3
Tillämpningar på exponentiell förändring
Aktivitet: När kan du dricka ditt kaffe?
Fler funktioner
y = 1 / x är diskontinuerlig
y = lg x
y = x0.5 (roten ur x)