En hemtenta i Ma2c

Från Wikiskola
Version från den 1 juni 2020 kl. 13.00 av Hakan (diskussion | bidrag) (→‎Uppgiften)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök

Läs igenom hela instruktionen innan du börjar. Det gör att du får ett helhetsgrepp om uppgiften och kan gå vidare om du kör fast.

Tid

Detta är en hemtenta som är planerad att ta 90 minuter.

Hjälpmedel

  • Du får inte ha kontakt med någon utomstående medan du gör denna hemtenta.
  • Du får söka information på internet genom att exempelvis Googla, läsa i läroböcker, läsa i läromedel online, följa länkar från Canvas, osv.

Redovisning

Du lämnar in en pdf med din text med bilder och diagram. Du kan klippa in bilder från GeoGebra, bädda in det eller länka till din sparade konstruktion. Använd gärna Excel eller annat kalkylprogram om det passar dig bättre. Det går också bra att hänvisa till att du använt kalkylator för dina beräkningar.

Uppgiften

  1. Välj ett delområde inom algebra eller funktioner och motivera varför det är viktigt att behärska denna del av matematiken.
  2. Förklara vad man ska kunna inom området. Det betyder att du gör en teoretisk genomgång där du gärna använder figurer.
  3. Fundera ut ett tillämpningsområde. Det är bra om din uppgift handlar om något tekniskt, ett problem i vardagen eller handlar om något område du är intresserad av.
  4. Hitta på en egen uppgift. Här bör du skapa en "djup" uppgift. Det betyder att den innehåller flera steg och blir gradvis svårare så att exempelvis a) är på E-nivå, b) är på E-C-nivå, c) har flera C-poäng och d) är på A-nivå. Hur det här ser ut bestämmer du själv utifrån den uppgift du valt. Det viktiga är att uppgiften inte är för enkel.
  5. Lös din egen uppgift. Lösningen ska vara korrekt och utförligt redovisad med ett korrekt matematiskt språk.
  6. Ange hur du tycker att poängen skulle kunna fördelas om uppgiften användes under ett prov i Ma2c.

Bedömning

I princip kan du bli bedömd efter alla delar av kunskapskraven och det går särskilt bra att visa begrepps-, procedur-, resonemangs- och kommunikationsförmåga.