Talet e
Teori
Inledning
Talet e är den matematiska konstant som utgör basen för den naturliga logaritmen, ln. Dess värde är ungefär lika med 2,71828. "e" fick sin nuvarande beteckning av Leonhard Euler och kallas efter honom ibland Eulers tal. Talet är viktigt i bland annat matematisk analys och förekommer lite varstans i matematiken. Till exempel råder följande samband mellan nio av matematikens mest använda objekt:
- [math]\displaystyle{ e^{i \pi} + 1 = 0 }[/math]
Objekten som avses är operationerna addition, multiplikation, exponentiering och relationen likhet, samt talen e, π, i, 1 och 0. (Symbolen i betecknar den så kallade imaginära enheten och är det objekt med vilken de komplexa talen är uppbyggda.) Sambandet kallas Eulers identitet.
Wikipedia skriver om talet (e)
Definition |
---|
Exponentialfunktionen
Om [math]\displaystyle{ f(x) = e^x }[/math] så är [math]\displaystyle{ f'(x) = e^x }[/math] Om [math]\displaystyle{ f(x) = e^{kx} }[/math] så är [math]\displaystyle{ f'(x) = k e^{kx} }[/math] |
Definition: [math]\displaystyle{ e=\lim_{n\rightarrow \infty} (1+ \cfrac{1}{n})^n = \lim_{h\rightarrow 0} (1+ h)^{\frac{1}{h}} }[/math]
Definition |
---|
Exponentialfunktionen
Om [math]\displaystyle{ f(x) = e^x }[/math] så är [math]\displaystyle{ f'(x) = e^x }[/math] Om [math]\displaystyle{ f(x) = e^{kx} }[/math] så är [math]\displaystyle{ f'(x) = k e^{kx} }[/math] |
Definition: [math]\displaystyle{ e=\lim_{n\rightarrow \infty} (1+ \cfrac{1}{n})^n = \lim_{h\rightarrow 0} (1+ h)^{\frac{1}{h}} }[/math]
Definition |
---|
Exponentialfunktionen
Om [math]\displaystyle{ f(x) = e^x }[/math] så är [math]\displaystyle{ f'(x) = e^x }[/math] Om [math]\displaystyle{ f(x) = e^{kx} }[/math] så är [math]\displaystyle{ f'(x) = k e^{kx} }[/math] |
Definition: [math]\displaystyle{ e=\lim_{n\rightarrow \infty} (1+ \cfrac{1}{n})^n = \lim_{h\rightarrow 0} (1+ h)^{\frac{1}{h}} }[/math]
Aktivitet
Derivera en exponentialfunktion
Använd derivatans definition på exponentialfunktionen
Definition av talet e
e kan också definieras som gränsvärdet
- [math]\displaystyle{ e = \lim_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n }[/math].
- Detta beror på följande samband
- [math]\displaystyle{ \lim_{h\to 0}\cdot\frac{e^h-1}{h}=1 }[/math]
- [math]\displaystyle{ \lim_{n \rightarrow 0}e^h-1= h }[/math]
- [math]\displaystyle{ e=\lim_{n \rightarrow 0}(1+h)^\frac{1}{h} }[/math]
- Sätt [math]\displaystyle{ \frac{1}{h}=n }[/math], där [math]\displaystyle{ n\to \infty }[/math] då [math]\displaystyle{ h\to0 }[/math]
- [math]\displaystyle{ e = \lim_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n }[/math]
- e
De sju första elementen i talföljden {(1+1/n)n}Mall:Sup sub är följande:
- [math]\displaystyle{ 2 \quad 9/4 \quad 64/27 \quad 625/256 \quad 7776/3125 \quad 117649/46656 \quad 2097152/823543 }[/math]
I decimalform, avrundat till tre decimaler:
- [math]\displaystyle{ 2 \quad 2{,}250 \quad 2{,}370 \quad 2{,}441 \quad 2{,}488 \quad 2{,}522 \quad 2{,}546 }[/math]
Talföjden konvergerar tydligen ganska långsamt mot talet e.