Matematik 1c
Om Matematik 1C
Matte på öppet hus
Ämnesövergripande samarbete matematik engelska
exempel på film på Khan där man kan välja och editera undertexter.
Allmänt
- Miniräknare? Instruktionen till Nationella provet säger att digitala hjälpmedel (dator) är tillåtet på provet.
- Ma 1c.Kursplan'
- Matte A kursen finns på Wikibooks.
Grovplanering
TEINF11 Matematik 1c, period 1, 2 (4 lekt/vecka)
Vi använder Libers matematikbok Matematik M1c, av Sjunnesson, Holmström, Smedhamre. Innehållsrubrikerna nedan är kapitel i boken.
Vecka Innehåll 34-36 Taluppfattning och aritmetik 37-40 Agebra och ekvationer 41-42 Geometri 43 MD+ Geometri 44 Höstlov 45-47 Samband och förändring 48-50 Sannolikhet och statistik 51-1 Jullov
Extramatte
Mål
Repetera det som hänt under veckan så att du hänger med.
Hur
Lösa alla svarta uppgifter. Prata om de svårigheter som kan ha varit.
Mål
Repetera grunder
Hur
Testerna i boken
- Jobba metodiskt med ett avsnitt i taget.
- Interaktiva uppgifter finns på denna sida.
Miniräknare
Vi behöver inte skaffa räknare. Allt man kan göra på räknaren gör man lika bra eller bättre på datorn och datorn har vi alltid på lektionerna.
Tidigare var miniräknaren nödvändig på nationella provet men från och med i år är det tillåtet att använda datorn på nationella provet.
Vi behöver göra vissa begränsningar av datorns kommunikationsförmåga under provet:
- Nätverket stängs eller får nytt lösenord den aktuella dagen.
- Du stänger skype, msn, facebook.
- Du stänger ner nätverket och Bluetooth på din dator.
- Du ser till att inte öppna anteckningar eller sådant som kan uppfattas som fusklappar.
- Du sitter med skärmen fullt synlig och provvakten sitter bakom eleverna så det blir fullt synligt vad som görs på datorn.
Om vi gör på detta sätt har vi begränsat möjligheterna till otillåten datoranvändning på de sätt vi kan. Om vi trots detta misstänker fusk kan vi analysera datortrafiken på skolans nät.
Miniräknare i datorn:
- kalkylatorn i Windows, start - program - tillbehör
- WolframAlpha.org
- GeoGebra
- Excel
- Google Docs - kalkylark
- http://www.widgetbox.com/ som du ser ovan
Kapitel 1 - Taluppfattning och Aritmetik
Kapitel 2 - Algebra
Kapitel 3 - Geometri
Kapitel 4 - Samband och förändring
Kapitel 5 - Sannolikhet och statistik
Kapitel 5 handlar om Sannolikhet och statistik och består av nio delar (en del har teori, exempel och uppgifter).
5.1 Hur stor är chansen?
Intro
Khan Academy om Probability
Här har jag börjat skriva undertexter (subtitles) på svenska. Det är enkelt, bara att skaffa ett konto på Universal Subtitles och sätta igång. Vi kommer att göra övningar på detta så småningom, där ni får en film var att översätta.
Sidorna 244-248
fre - hemdiagnos denna fredag.
Definition:
Sannolikheten för en händelse = antalet gynnsamma utfall / antal möjliga utfall
med P(A) menas sannolikheten för att händelse A ska inträffa. A kan bestå av flera händelser, exempel vis att slå över tre på en tärning.
P(A eller B) = P(A) + P(B)
5.2 Oberoende händelser
Sidorna 249-251
fre
exempel 1, sid 249
<ggb_applet width="629" height="465" version="4.0" ggbBase64="UEsDBBQACAgIANpWeT8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICADaVnk/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1Z3Y7buBW+zj4FoYuiBTI2/ymldhaTtLMNmt0NMGlR9I6WaJs7suiVZI8n2NfpK/QF9sV6SEoeeZxJ4kyQDrYFMuHfIQ/Pd853SMqTb3erEm1N3VhXTRMywgkyVe4KWy2myaadn6XJt8+/mSyMW5hZrdHc1SvdThPuJW0BlRkzc0bmZ4yw/IxjWZylGKdnmRZsnhI9l5glCO0a+6xyP+iVadY6N5f50qz0a5frNihetu362Xh8fX096lWNXL0YLxaz0a4pEgTbrJpp0lWewXIHk65ZEKcYk/E/vn8dlz+zVdPqKjcJ8iZs7PNvnkyubVW4a3Rti3Y5TSRTCVoau1iCTRKDTWMvtAZA1iZv7dY0MHXQDDa3q3USxHTlx5/EGir35iSosFtbmHqa4BHFHKdEMioFw5JQgMPV1lRtJ0w6peN+ucnWmuu4rq9FmBPUOlfOtF8S/fILophi9NQXJBYUCinjEI59mMWCxoLHQkQZHqfzKMqjDI8yHPa4tY2dlWaazHXZAIS2mtfgvn27aW9KE/bTddyaT56CTY19B8LMYxoxh36Mn/o/APop78EeGEkGWtt6c6LSXiXP+KerpA9RyXqVhL3HSirusVJ+ANy4h08xk4iBTlAV/oW/I42MnqAxth+mUPKvYuJk3DNl0pEDNUsv23myNavG04VlSGQ+6gkSQA2pIMgFIhkUiiIgAyICcQFNkiLpS4WYggGOGEqRlyMMBW6IFP7jKiwmkYDFfK8CSiICijgSDJFAKY6ASCjQEihKGUgIgQRM8uoJ9UswibiEFksRhz16RioCggwmQhvUU8QIYn4yUYhKJP16hHumy9RvHZakSGIkiV8QSA2EjmQG+RQxb43s4LLVetMeQJSvir7auvXeFyAN6eg268X0dJAUn0xKPTMlnBOX3pMIbXXpGREUzV3Vot6JNPYtar1e2ry5NG0Lsxr0k97q17o1uwuQbnrdQTZ3VfOmdu1LV25WVYNQ7kq837MryaBO97uGBhsM8OGAGAzIQV29V6+DEbRpDOh3ddOL66J45SVuUwMg+WNV3ryojb5aO3toxmQcjpyJ2eSlLayu/g7B6rV4XFB/AoVs1Z9AnKt+I64uLm8aiGC0+6epnceRjFKcCqwkxwQrAifXTRyCo2XEeSozQjPCFPzB3nLtyZeJUcY54VJkLGVMpjBpMERZlkmCCUkzIqJqs917SO/M3vhFbYth/VXzwpXFHopg/Uu9bjd1uDrADmpv03m1KE2IkMBrOJfzq5nbXXZpM6719mYNLRz1zxYBdQSZgQoBAl05i2WQ8RvbS+Egg4ME7mPNFvtxktEgEcpZLIMUBG/cWmco6a0kuFdjm5DPcHLAmhD50+Ti13/XcMFAVxr81CZoU9n2dRwCOtn86tZuP/uHzWpm6sNA32sg79VwXhX1A9afjO/E3uTK1JUpu1AHJ2/cponMHWyqMLldQTMOdGBp78i/wQ5ib2EWtemNKMOFLUIZRvEwio+6w1IXtVu9qrZvIUrubGAy7nc5afLarn0sohkcD1fmNt4K22g4XYrhPM9NgC/3pwjg03psgLWbdukgDCA+DeScBcyFpAMjnpqlWcFFDLUhAEMM32IfrngeWORmP0Heu+Ob0Aj2wPC9IQuRo8v1UvuLYGd+qW9MfQBIWPF7V9yFCbwQbAH3r/0C3tFrY2K4xD1DZQ0LBs4dJDJAvkG77kp/05XvYhnvuN5az8ODzB1777gM4igC9RHIXnwWZIIExHzxGACjXxGwl58XY5gfpLxHEmH0KwD2p88CLJ4QRLAAmA+0xxFiXwyx3bo2jX/C9zi8NbsWtgED0+R3P29c+8e/lnprYjVMP0QZbmG3IMfJHwZ6YNcx0g8OTDhV6/aNNxvFCEulVFhIxSWByw6XAb4zeFtzISgWhCqRSgaP7CGeH4eIHkJUu0p/OkT0MUGERypllCrFlRBw0RtAxATOhMioxFJlcME8CSH2EITYY0IIoBASp4wAPFRxIigPEOFRJgAvwTBXmIosOzGG+ENoxh8ZQhIQoFRgkaU0zRTtTsJM8SyF0MpECmHE03sR+kDq/vOxqf3L/+O5G+/v///1w45kmKTw+sI8Y4SmssvkJGU8FSngQzLGv0haz91qpasCVeGzyUtb56VJbt/xGvsLBNLEYxtx27T9QB4X65Y4cg1clW2+Rz7/9CiEiYWNKPrHbyc9u/8iTDA9ClN2mudu32ntEl49FXBwmqjeZf7Tm6/9xRaFCV+P4jPWLky1hd3BAx6iG/f3FBxDB73re3YkRL4fI/2tjwycB0FT2x067+XPe6lz6j+DZwwTSZQiwBlKMuhmnYZzDgtHSQE12i9ofq6iNU18vvmPKnZu81PIdPGbIBP1ZFISeCQEZhj7j/Eh3xBFqUwlVWlGiM9CX4dNLyKbLo7YVJzCpuL/bHoAmxgQCtIowQrjIzbRPZvIl2TTd78JNt1zNEG3JClnCisF4DLxtdh0Htn03RGbzClsMg9lk/5fZRNc25iSTHDBORcY+x8e7zucHkinmXOl0dXeKTo4DXDamKOvi5/3eD/1rvvjfN6YNtCCZoEHnH7Ij7leh8gJfW9+f+UfOsii2a//KroPsNUf0BTBc0qcBsXsEUKh2AlQrG4qMN7/nKdr5Ep7pVFjC1dHOI7QGA+/woYfQbrf85//B1BLBwiq/ZEU1wcAAGwgAABQSwECFAAUAAgICADaVnk/RczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIANpWeT+q/ZEU1wcAAGwgAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAbwgAAAAA" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Kolla gärna Mikael Bondestam som förklarar kast med två tärningar = sannolikhet vid oberoende händelser:
Här kommer en bild som är lämplig att projicera och sedan rita på om man diskuterar sannolikheter vid två tärningsslag:
<ggb_applet width="540" height="413" version="4.0" ggbBase64="UEsDBBQACAgIAE9OfD8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAE9OfD8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Zttc9M4EIA/w6/Y8WeaWJbkJEwKA4VyhfJyV+Bu+HLj2Eoi6lge23lj+PG3kuzUKdwdHIzmRp2melvtah/tSpppO324W+WwEVUtVXEakEEYgChSlclicRqsm/nJOHj44O50IdRCzKoE5qpaJc1pwLSkzE4DnnAxo1ycjFlITxiPRycJmdOTbB6mk4jP2WQ8CgB2tbxfqFfJStRlkoqrdClWyaVKk8YYXjZNeX843G63g87UQFWL4WIxG+zqLABcZlGfBm3lPqo7mrSlRjwKQzL84+WlVX8ii7pJilQEoF1Yywd370y3ssjUFrYya5a4ejYOYCnkYtm0jaEWKhFIKdJGbkSNU3tN43OzKgMjlhR6/I6tQX5wJ4BMbmQmqtMgHJDxaMLjKGS0LQNQlRRF0wqT1uiwUzfdSLG1enXNmMRJjVL5LNEq4fNniMIohHu6ILaIsIhjOxTavpDaIrIFswW3MsxOZ1aUWRlmZRgNYCNrOcvFaTBP8hoRymJe4fYd2nWzz4VZT9tx4z65hz7V8hMK0xDjxDLH/jC8pz8xfpgeGB47SXpWm2r9nUY7k4xG324y+hGTtDNJQvqlyYj/jZfxP8C1a/gWNwnvkUVT5tt8vrBIo++waNs/ZjBmTlycDrtMmbbJAfVSy7Y72YhVrdOFToBPdNQT4Jga8QiDnAOZYDGKAJMBCAfGsUnGEOtyBHSEAwwojEHLEQomN/gYf7CRURYDR2W6d4QpCQQNMeAUiEkpBphIYNISUzSiKME5cJykzZNIq6AxsBhbdAwM16gzckRQkOJEbKP5CCgBqieTEUQxxFofYTrT47FeOqqMIA4hJlohJjUmtE1mlB8D1d7ELS5ZlOvmCFG6yrpqo8rDXqA0Hkc3p549no4OxTvTPJmJHO+JK72TAJsk1xlhDM1V0UC3iZHtW1RJuZRpfSWaBmfV8DHZJJdJI3bnKF13to1sqor6TaWaM5WvV0UNkKo8PKxZ5aRXjw6rxgbtDbD+AO8NxL366Kt2FY7AuhZoX1V1J55k2YWWuDkakOTrIt8/rkRyXSp57MZ0aK6cqVinucxkUrzHYNVWNBfobiBzWnU3EJ3wbiGqyq72NUYw7D6ISqEgGdBJ72uMOba3QzSOBnjSHL50AqWJzj3OBpOjSTinG+J4hRtjYnPYk2QnDu4uKpn16xf1Y5VnB+eNv2dJ2awr81jAE7DSXjwqFrkwMWEyGW/i9Hqmdlc2GKjV9XZfYqu1P1sYzoBnQcQ5CrTlzJZGRi/sIBUamdBIhF10yewwTiaRkTDlzJZGCsPVLq11lHRekrAzI2tzgoXBUZ6YWNf3+rqQzWXXaGR6feOpln+1Xs3EIWKOVZKfpHI6vBVR02tRFSJvAxg3cq3Wtc3HXmxnIpUrbNqBFkiiN+sdLsD2ZmJRiW7duXmGWVxmNOzH5hfdRtV5pVYXxeYtRsKtBUyH3SqndVrJUscbzPDQvxY3MZXJOsE7I+vP0xmHrqf6bkA8jUaDubhulgq3GmNQ4EmywLl4lOCITrhcrPB5BY0JMhOnB9yPzMNNcwU1+4in2a3tuNk3HP5qwJnQTPJymejHXet8nuxFdYTD6HupstuQcA+MJ5japd3jUggbHXa9WClRncmpo6MJqdewax/p+7b8ZEv7atWe6jw7Oott763twhiykP4F1+P/Fy58TP8HYJFDYGc+AKMOgT3xARhzCOypD8C4Q2DnPgCLHQJ75gOw7paMHAD7xQdgkUNgFz4Aow6BPfcBGHMI7IUPwLhDYJc+AIsdAnvpA7DulqQOgL3yAVjkENhrH4BRh8De+ACMOQT2qw/AuENgv/kALHYI7MoHYN0tyRwAe+sDsMghsHc+AKMOgb33ARhzCOx3H4Bxh8A++AAsdgjs0Z/EB2TdPcld/GbSD2SRQ2RnfiCjDpE98QMZc4jsqR/IuENk534gix0ie+YHsu7GjF38ltIPZJFDZBd+IKMOkT33AxlziOyFH8i4Q2SXfiCLfzKyYf+PZc1foLf/TPXgL1BLBwhhk6/x7AUAAOk1AABQSwECFAAUAAgICABPTnw/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAE9OfD9hk6/x7AUAAOk1AAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAgwYAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Khan Academy
Däremot får alla gå in en kort stund på KhanAcademy på slutet av lektionen. Alla ska välja mig som coach så jag kan se hur det går. När du gör övningarna kan du klicka på Add coach längst ned på sidan. Gör det och adda mig.
Mitt ID är hakan.elderstig@gmail.com
5.3 Händelser i flera steg
Sidorna 252-255
må
Khan om oberoende händelser i flera steg:
Sedan en kul grej bara.
Rulla tärning från http://www.geogebratube.org/student/m712:
<ggb_applet width="408" height="311" version="4.0" ggbBase64="UEsDBBQACAgIAPZ9eT8AAAAAAAAAAAAAAAAnAAAANjJhZTM0ZjBmMjFhNDI0Zjg4OWQ5ZWFjM2VhN2VkZjdcYjEucG5nAa0EUvuJUE5HDQoaCgAAAA1JSERSAAAAWwAAAFsIAgAAAJNUbs4AAAR0SURBVHja7Z3rS1RBGMbPnxWCkliW2IU+SCBkEpqgRnZBI7tJKFhaCppZimiKdlExM8vYvBVK3ipFw2QTlc17UYpsEtsjs7yOZ9fdLWLXnXmH+bA7zoF9f+e9zeHwaDi8Dfv6767h2doOa179SGblYJBO/P7Wvpnln3av9hoe/tY7Ng8KMdnth7MsykzQARrc5r8jMvxlOb28XyUQphmf320ZsvlK5En3pOn6tNJ38LqBz4sg5Yvj7ZwBX8BvxoRROQ8/muzCiquzGKbrESbyNYVNo3Pf1hyqjJW1ddza2NxO+WZjcVsiMg7Em0osTFxKWj7JUGRPMdwGCy7wkHvUGE97puTwMRNBjpBxOPQYKDpkNQBtIQLPoWBR3jvkUfZynKqPMNwQfYdYResRXKXkvxQjsBDmV1kmnESyat6LJQBz6DfQkQvzUYM2iCDxUleqm4PQSCx8KwigczHQulEGceg6KJsgcAyqzJRsNRxwDQEBZxeDkghWtSWCdCEgIHyMlOIe8WV6YdWh8aDGxKCkolUb4iG5bhJx6D2YCBNhIkyEiTARJsJEmAgTYSJMhIkwESbCRJgIE2EiO53IwOhUZXPv5eLm5Jy6jILG+w1vsGL/ta4jkUnb0tH0sl3HbrjO6NTing9WvYjAL8JO3HKLg+b1e8/97yyBIQIcZHbI8fzw1IrIs3VRF5oizz2KOFUZEn+b/oo4Up/I+OQceUdo4p2DV16Y3pM7dLUtPKWcoDzrGlaZCKKAckfYyRIP71VGnH4gtu1NKlz8vqIskc7+cQoWV+/YMq+9Ck0oEpsRZcoSQXEVRiJfeH39FmnF/9nE30RgmzBy3/nHXolEX2wWm4+cKVWWCGwTRh641OLLW9qUX5UlkpBVLSyMymj0igOJhpKrskQKql8LI/ek1Xglsj+9XmxGg68sETQXzk4koQjVxDOR3cnOOg2OyhJBZ0HtGToODziQeimJ+POME4CetcEy5DQ1Lg/11S0OZBk0LGIbjsXqn2vSbm7e/7CkuzjRoHMXXRk+yy08DsH+bFgDRgRGUtHZnHF5phWUGP8/Ewjk8xHPDwTgR372jh3xDG3StoQ6guJKIOA7uRVtOP7o+1Rxpw0mwkSYCBNhIkyEiTARJsJEmAgTYSJMhIkwESbCRJgIE/lXIqQboKqylY9jUzcgs3KQtSVW1tZJzcgobBoVX7qGZ7UlMr2wStpoRm2HleTxtCVCWnCAYBCe2NxObQU3KHVYhmwbWleUXPUU7rF+/UFpFQllg0iVZcKkkqbVIE1OoSW4QWT5p53kKJFWtMIhyyfCWRykIijLLvaOzesTL+QKpCbpJIJgIdHemOx2HaAAB/Wp+EDqeIbcpdAO5bMsgoW8Ax9EvJiJiEZFhoJ2Rb1GFocVWd4YOEBH3mC49rMmzWtwQQMT7Kce2NXaN2OSesbtl73DPRGRU1BxthNFB6DgUoonsVHTzKsfcausua1ePHbLYsiKSca7uoZ3IuQvOAGi2yeR3yCdCBCEjC//VuAP04ihAg09G34AAAAASUVORK5CYIJQSwcIT3u8qbIEAACtBAAAUEsDBBQACAgIAPZ9eT8AAAAAAAAAAAAAAAAnAAAAMDhiMWI4NGQxYmExNjkyMGI2MDczZGU1OTMwOTMwNTNccjQucG5nlZR7NNMLAMd3vC5j7n4sr4ZrppSMlRAW5idEM6/OQaHMo2IXaW1aHY/lGUXm5jGvbqQ7jzVFrou5siUmdkuRYR73hpFHRkrX/eP+f+8f3+/3fM/5ns+f3ywiwQ0G1YNCIBCYhzvou5vB/0hZbtfv+pOFEIiilQfo7E8dlbK+eiKcdfiyRg3RML3e8zne0lk5ycg0FQqtutWVCRX1d4WgfdDmPa/UgP6T5k/cAU2sWb2XhLiWgZEUtHYcXrWSsrYTlt4LpQOWju+lA0IhvTyqnBY5RSOoFjMdO9N2eDvP3hTVPepbWT0SH4TduVm+NNl3VbR1UanTPE8trdspfmhtXLG8rlLeCs7Focx+3N/bR6CpMBrUpROy+uWsAFTF2FiirPMYDRnU4mAN9T2N8C6XO9t1zwdb98JT+8paNzMuYihRFl78UeY18ubL6rZLyIFfUiDgdnUzQ9saQ3Zn8FM+zZlo2WGOtMxTTdtrogFtVbJlE05sunbbbmv2/n65vbxpZZMTvBoXrlLlt0yny9Ecaoj95uoUGSc9HiPRW7N/G9BqsPKEaftYN0WxdCfmssguPyt7bVEj+aZGY5dxlIhv0HxCIf2n9mHQD37QOOP7w3Ifz1i1kknO7KsrEYnrAX7T05ejDJG4YR/K54iv+mcCYUrT4yVhU9HNR+5yjmJeVszpbWiFniJAG23W6NzfXRq8LtzVSL1oqWz7azQJjHu9TnB4si/2Eoj0v4bx7/ENRObD+xXTkmfv/3acwri+tXVFjPgOtxh0MsEvMimYTBlpYEntH5dyn4Z6n6oJNXrwdjKOiJ+5F03yvzUO/9Zvn7Qx0PyHONVhvK6u0bIRa8zqxW61minZIgvh8ZtuPX/9AFcriBQTxi7G9ZFfCMMGyDMkxaIiBXIxwVNgkC/7OuiBmBqcWxB1p7bFHmBjSabzD/c54TcyuxK5N6pyayzCK5ur67OUVd4Zpz7jEAyXBFiTYdZyeO6CDAFFofC7yzDyAsV+ImqWpV8f4gyC7rvYaxnqTQT7689qjJP1RMN7QJDBWARop/0GktorWBc+b6qHYi6pyXzgAKDx2E0hWHsBcRr6tI+qANO9wMba/sudqB4w3C7mTXOaPFyfs+L/IQOFKxlS9sS8uUeTGKiA6fdSBCVTr0yEOE0jozGQOOqNrBUviFp4oemhgg06fU4fRHIYdmwUGgEDvAq89ALU3K8qKh2yXlYoYxKtQDbSBntyaNTIHT+kea4RHfYgrO1DnU7gMvNlXEP4twbBAZXY7MyY54AKLTuTa1GxB3AFAR8Q8d8jn4FGBfcMzfE1ccA7VF6ZnnchSMqxTYhzGILnm0sEA5sld+iAG4Y/ItCKn7lBz40B3Jb+T0Fbd6SvKulEPS04KHHvoe7MwnQsHMOxLQx/wE2YF3UUXhlzYjQxFrYtMVy0eR1Qh8pDIgcHG9cK954qvRRbtU4tdUzmH5YIeCtEjK3TK+XBnGGNHFrnz9m2CSQHkl3HJ1zgyyuuva/PSwxuMw25hi/Y3ZVsoDiWPBzh4fkQf+xYIIZ3FMVjLhfmaUSaVMV9/KBZdcioDyWoPXsGqUso+4R/5PQOPZIVxiEOi1Mk1WCyHHKmViIfwRdRLW4GUcV95zl3KJPywRZJqH6fqaqus5wCtHkHVN2MnhQ+CdHvSNFaGpxPCElTRd6jDv6ZQzNfT1zwxbl8aaeA+7pjoJSy3IJqeSI9IruWdL/NLiBAF8udS9+SDJV4py9yClemHp0jMNYV9ztRtwtnbAhmWspFt5idezZVzUaFxW384zq7NwrxcCWADfiw1L8BUEsHCGQ+JSdMBQAAbQUAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAJwAAADE3MDY0YWZkMDI2YWRjYTYwNDRjMzRkOWU2YzRjYTUyXHI1LnBuZ32UeTjUCRjHR65xDMYxzahh52eUYyZH5Ejl+DFkhkljne0sIYSKYTCVyoQh5cq4jxxt27htYSjPSI4YlUiIIoasPI4c69jl2d3/9tk/3u/3eT7v93n/+74ssgMBJqksCYFAYHa2oNOue+wNdN+uplNC+BCIKMMOtKBEDs/nb9pTLBQ7FqhKmWUbHFK7pS4GGi2naCFq/Tq2NSHxLadVxQmbhvBesRSp07fHO70Au09rp7t2bxUnD2GfVN3JK+fOXePQI/hjLW1b1YwWxkKPIM8kzE8mzMA7Yqpvwb/hIeNBWVT99LvXxcIB7m92Ht1dnemhj+woI2I2h8fFJR21tFWq8MskUXTRzayP8OwoQ7OGmKpC86zAhfJkapOKsfpSTcXAyiabEWExVy4ubt7NmljUfC1aj1LKVza53vNOx5PlgmhbYUgrbBhV9Q1sS8afv65ZlwoFN2lW93FBnp4pCXeEJ3sdcUTPl0cGX5F9SHryMoitVt7qeglxrEVNVvUofAiKIuCOSh5CfzWEbBNEcqxi29eGMWy6i7L/KhxtxBzHVPK+21Y9epHeBcWBax25ygKWtIsqnA3BZUaJqjTOnJwuMgF0m7/c98u5RZ4df2Itd0Pg3RquJjWxBS8UEysw+okbs/6pFz1yaWF8jfNZv7LHpmQ2hKR7WTonu2vInT0rq+Dy3qWA7y5P1clgvtyM/o0WkCp/KxAKdeUifcDLA6vsyIvn+EtM418iDlY4lNVGApgsKSGhto7ImjDu+tLycileJvpDtq9b8kZjRfvttUFOiIfzEKV6KSgCsa3kdBomI6sO3mVZ2LQPwyTutRTTqZ1d33DaehU5Td32lVNTTsdtvo3bC+2lDu7Aa9yhYElpNjs004NTmyu1/CJYkCQJjD/TzNNvyUw5DlziqqZrTIzj38dP+X7XzmTlYqyc7Q1F5UMJIuUeZvuH/bko4TLnYBLFthMNXyGZrQz+CngA82WYK2FtTaHW4N88eCyEHZf3+4c3M84geJs5Cm98Fl4XOZNPrgmWKnppQFOCn8Fg6KDKwEDi4TGNnqfXtufJNQ2obyUAoIX9chdafmSR7Ko5pDWH8Ox9BTeK/ZdP43O29ArdmlWEcymUj8qEvdMWqKaBQwUeXJoEh86jW8XroRNHqmecBAWPUlIuAhrBXPqb/gOhLq3UOKrG9NWrmWgQV5NhytHCZkjDaWlEZWeDTpqoGM6QsW/stAYKcMjM9S8LnCdji7+wEvASrppZIdHa7oNRSyJ5c+8WlKLUi63hn380S02pSojkbhyUk0gQAfcBAQ5MRyzxFDwkVbcXRNrwaPJeSIl+O6YXlngYHrcHG6x5KwqfERL9jkyPf5Lb/wURJ7Uf2yLZ4bBdlQJGAS/PVcI6yEPOF9ckMkU3OUKpN2zNsT/wkqFPFQhJlxyXwIZ2t+ZAx7Q9Nwty1N9zWkEVazGpzv8ktQ3Pf/DnVdhT46SdZcPRCdwffe8vJ9XNnPr/xepV2BSsmh/UjudPRDF2pmBIU1qrV4hEyBWE7MjRAyzyMbXJ742mi+qj/cGPH3MmcCpPBAKBXXeyH7He4Gx0c7tO61nVC4ulJzKkZOSkecu7fW1rpu7mCurjiR3sSvGwxsrOBlPi6GTd0vmtE9nOyAwTYJKUXI4LQDlrHH7YqW5MwJou5789w+P4KMqYXAMy1G3cRKbqk6ibm/oXmlO0yMe6ogAkLqN+zc7X+pC5kMzS2cWbtZOoWrYlfX2s27s6JeJTLFLHD+CdSS1uPXclDYtvkURoh0af/wRBb4ipjRUaTjWL7TfWnS3o27+d89XfqCw6bt133pYIDin2GEupW4sXrXQrOnbZkMLrpym8nhyp6aSOj6H6PoVld+65wBhAqY6rEG/kIfZ5gLueua5P3pbHzef8rLcowYBszO43hthZO4CVlj/f+gtQSwcIm4KhdKcFAAC0BQAAUEsDBBQACAgIAPZ9eT8AAAAAAAAAAAAAAAAnAAAANzcwOGVkZjA5MmMyMWM5YzRmMjRjMmQ5NzkyMzI0MTlccjYucG5nlVT5UxIIFGa9QlFLSTGPJDKPMlPbQm0bLzoQ82RHVDwyLC0PsDLzKtlSEExJrEg0RSVpVUwoUnPNvFBRwmO8MguVcTex8Danddndv6Af3vvmvfnm+968mffIfj5ndLSMtQAAgA7yLCJAiaH/BlBFmQvRCQMAgLobEuGOTpmQl3xH7XY36l7n6g8Npvc0oW1VQHfKIERYdRmwBphbPd+v3XAfQasBegYirFFp/hRtTkH4C0daxbC5Cxkl/dYrHOLfEDQvnpwckPfbu76v5YlF6TLGpVLnlL15j8I2vx8yzhyGJ7dEz4o4n34biQ1x+Ju8WDcv4svTdSitGSamgLs5RZ9TR+k72ETdd5EMyBmcbKQPsrWuoXmHs5Y44TR+VWxDE9cKvL+4TvNAIfDVKGAl07rURb3ptkNFVAA33/xoP8hXWtRp35IfD2tdZr+UXXIyBXkxKIh6fv7vx4WUvBwkWehUP03seNsxN1VFcdwdHEi9U6x+BDNWGklXnJAvrTmAs/IKCB2OFR/flQervnNFlDnzg1W4Zkmb+BelPuYOBM8NM6kNNn/FxQuju79+15B5fEIIdGlJeF4BfBPFCPpIo/w5o/3YSqUdFR7LtgEWtcWHqv2UYqeBhTdAB06l7zFOnRgeuzn/pt9scnLtS1rALXVfGUtyTWA55qRRIsLF1fYNP32evVr0lMeTXgmLjblWdsvf8xOsmGVanX37djPF/bSab/w0gnvsJgosLZvIWCEVluNp0TTVq/ugkVtG4uQESMTF1nuT0rKBgTkc3EA2fdBmEdPy7Ho04apkablxfCWoZnB7X98rj9lHRjh0zVTB12bB8I2w8MWppYChWs5TFv859EmXoonXfqWBesjCZLQVUWOnIrGOlc29rjIULDyQqkgW3uayhOtfPtCisfvgiA/rq4MBHeuHR7cM5iAP50hdGM98oWNdAQpmP+Vhx5esdRtZxzuGzcH6DnSf1BOdA7a0JN09TKtrKIjBtr58u78Bm/Qe3PbecCE5WNiTmMxPO/kfk3YlFA4ql5frT+q55cV+TkU8QN1Lg+28PKBFhueC4psTQUWkLrz5/2Q90zAP65rdcUWrQGOtJcQF/ArJ9qHpOgKfIPmUvyxipcXFBUhSdj6m/Nf1y04UaDVeeohrS7VaMHGhzvj93F7Vd0I5SACMONiUBkFyxREat/ZkljstK4KTdxE6vWS6zwui6YX6et73vY1/1RauqGmIUo9hhI69BN+OnuvgCr68WCnORJNJTywiqyKbOEHUhcUeML6uBIQsseUy6SS8gaHSgQ5lyfLFj0mWLHIM7Afg7Gl9fwu7bH/lDrw6O+17CUjEi1dGXRvGcASaQlEc/cOSHY6lihXHnnV2bphHVIRgqds/UqSYRHjeVK05GsoxhLTvjViGJ7752nY5p/GAUv08lau8IutimoL98nS6putfPEtWCFb7Qnr/wiihN+8iNSyxfCWFsw39uj0ThZn1s3NysweKZ57p6C5n2hhA2mE53t04ccsmNgiHNbNc1MRsOnyjiQ5q9/5Ck8gsAx/wqQfphYGz+kwr/RIG+xrd/tCeu54+T4DRZH9Dd2e5VNCWJRo/UqlFP5eUBTwOOiDPwDTagcsAOzY5G27jCu1xVLlhlqBhzLbSbAO6RmGQ8GicNT6IaYFEcYl9ucwPRk5uZxIiO7Z4bOboR5UdllPLm1Hh4KkwNlqMyQw+oQ/WO65u5dNQOQ+ghzOkNuPVnHtM5yJ73sXBdEXMYStPXUzvRspIvZXHN6IJ9HWG11Ix28BELbSrp9VgQ5UQPcKIK7ivqXypAOQpH0SdRyTxH1BLBwjNms5SVgUAAHkFAABQSwMEFAAICAgA9n15PwAAAAAAAAAAAAAAACcAAAA5OTBjMDdhMWJkYTFlOTlhOTMyNGQ0ZTlmOGZjZTc4MVxiMi5wbmcBAwX8+olQTkcNChoKAAAADUlIRFIAAABbAAAAWwgCAAAAk1RuzgAABMpJREFUeNrtnftLVEEUx++fFYJSWJbYg36QQMgkNEGN7IFG9pJQsLRc0MxSRFO0h4qZWcbmq1DyVSkaJiYq5iuLVESX2L7LLGfHu+veq+0FZ3aG+WH3eq94PvfMOWcGzlfNaTTWHX87Bmer28Zza4cyyvsFnfj7m3uml5bXDe3V/Pyse2QeFKKzWo9l2qWZoAM0eM3bIzL4fSmttFcmELoZl9dpH5gxS+R554Tu+dTij/C6vm+LIGXG8XbPgC/gb8aEUdlPvujswhVvZ9F0z2OZ8M/YGobnfq05ZRkraw682picdv5l4+KWRHgcWG8ysdBxKWr6ykPhPUXzuVjwgJ/YI8d40TXJLx89EcQIHoczOAaSDlkNQJuIwHNosUjvHfwoeTNK2YcZrrG6g11F6SFWKglIMgILZn6FfcxNJLPqE7sEYM7gG6jImfnIQS4iCLxUlQabg9BIsH1gBFC5aCjdKIKY/xV9w5Pljd3XChuTsmvS8+sf1b3HlfUNh+jRBAtHo8xMwdb/mJj5eSKtZM/J294zKqWw6/O4iETgGgwC9i4aBRFcNXwSfhF2+q5PHDRvPXwlnLMgXDAIWD5acmEX+zK1sGqIg8wOOZW3L6Us4kJN5OWGiItPw8+Wh8Tdo59iHQnnJlSYaBRU/JchoxNz5B2hCfePXH+t2zUdvdGyL7mUoLzsGBQ0uHqI+EvaGw6KHWFnivzsssPPPWa3HUi0Lf5ekZZIe+8oLRZv79g0b74NjS9gN2OVSUsEyZUZiXhheBiDsCJiNNkeEdjGjDx46Zkhkagrjezm4+eLpSUC25iRh682mTmzo/gqLZH4zEpmYWR6vSEOBBoKrtISya98x4zcn1plSORQWi27GQW+tERQXLgrkfgCZBP/RPYmufM0OEpLBJUFlWeoOPzgQOilICLWHmd7RDDq7ANuU2NzkV994kCUQcHCbsO2WOaa1X3yeMfz/sMSH2BHg8qdVWX4zJfw2ASLVbDukAiMpKTjmbG5uitIMSKeCeyEiJkDAfiRcN7xv0TYoRHyCJIrgYDv5JS1YPsjwcHiTojIfdSqiCgiiogioogoIoqIIqKIKCKKiCKiiCgiiogioogoIoqIIqKIKCKKiCKiiCgiiogioogoIorIrhqB6n2SgUhge5+EJxLw3iexiVjR+yQwEYt6n0QlYl3vk6hErOt9EpWIdb1PohKxrvdJVCLW9T6JSsS63idRiVjX+yQqEet6n0QlYl3vk4cI6QaIomxlUe+TRzcgo7zfvLbELhkB731aWXOQmpFmaxhmXzoGZ0UhEvDep6mFVdJG06rbxkkeT6YDgW31PpEWHCBohCcmp1043a9A9T5R6LAPzLi0rii4mhTukWyM//hDYRUBxUWkwj6mU0kLqkGanExL0EVkaXmd5CgRVoIKBy+fCGdxkoogL7vYPTIfPOuFXIHUJN1EsFhItDc6qzUYoAAH1an4QOp4Gl+l0B3SR1ksFvIOfGDrRU+EFSo8FJQrAhWyJgc2K7y8MXCADn+D5l3P6jSvwQUFjOh6vrCruWdaJ/WM1897h28iLKYg42wlig5AYinFk9iobubWDvlU1txSLx5382LIkknGe7uGMRHyF+wAUe2TyK+gEwsES8bMvxX4B9An0jII7Bk6AAAAAElFTkSuQmCCUEsHCLLR8sMIBQAAAwUAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAJwAAADg5ZjJhN2JkMTgyMTM5NTJlMDI0YTZjNGViYjM0NjhhXGIzLnBuZwFMBbP6iVBORw0KGgoAAAANSUhEUgAAAFsAAABbCAIAAACTVG7OAAAFE0lEQVR42u2d+0sUURTH588KIUksK+xBP0gg9CCsoAfZA43eEgWWlkJm9iC0RHuomL1jK61QSrPa0DDZxMKszCIVsSW2r9zl7HV2nRl1hvvYudwfdscZ8Xzm3HPOvV84GhG7MRH+1xIcrHkaKqp7v7/ytaITf/+9V1+GRyZs7TUsftbW/R0Uso49WVkQ0GaCDtDgNc+MSPDTcN6ldp1AmOb64meBzgGnRG4+6zM9n1vxEl7X8XEIpJw4njwDvoC/GRNGHb/2zmQXrsQ7i2F6HsuEf6a0sevbr/GILmN0PIxXm13YzL9sXJyWCI8D600nFiYu5Xc+8FB4TzESLhY8YBF79Bi3Wvv55WMmghjB44gkx0DSIasBaAoReA4tFu29gx8XH/RQ9mGGG6zuYFdReqiVSlxJRmDBzK8K9EaJFFS/YZcALJJ8AxU5Mx85aJIIAi9VpcnmIDQ2lr5gBFC5GCjdKII4/xUdXf2VTW0Hy5q2HK/NL2m4UP8cVyb+hlWPJlg4BmVmCrbWo2/g5+q8i/PWnIifmdvKWt+GVCQC12AQsHcxKIjgqu2T8IvUDacS4qB59Pxd5ZwF4YJBwPIxtpa1si+ff4zZ4iCzU9YVp227nLGrdunexozd19O3V6asP00/xTpSzk2oMDEoqFiXIT1938g75m88u/zQfdOuacXhh2lbLxGU2y1BRYNrjIhV0v4bptiRuqncYpedvuMKu23R5tKh36PaEmlu76HFEu8dU+aRR/NzzrCbscq0JYLkyoxEvLA9jEFYUTGazIwIbGNGLt5zw5ZI5r4mdvOqnRXaEoFtzMhlB+44ObOj+KotkZyCq8zCpfkNtjgQaCi4akuk5OpjZuTC3GpbIkvy6tjNKPC1JYLiIlqJ5JxBNrEmsmBLNE+Do7ZEUFlQeYaKwwIHQi8FEbX2ODMjglEf6IyaurYI+TUhDkQZFCzsNmyLda5ZoyePJ2PvP3XzOexoULmzqgyf+RIem2C1CtZZEoGRlHRic22R6QpSjIpnArMh4uRAAH6knHfMlQg7NEIeQXIlEPCdwssPsf3R4GBxNkT0Pmr1ifhEfCI+EZ+IZkTkUcLEE5FNCRNMREIlTCQROZUwYUSkVcLEEJFZCRNDRGYlTAwRmZUwMURkVsLEEJFZCRNDRGYlTAwRmZUwMURkVsLEEJFZCRNWs0qrhInc18iphIkkIqcSJv58RDYlTIozNKmUMP+c1SfiE/GJ+ER8ItZj7rqPPkTc0n00IeKi7qMDEXd1H+WJuK77qE3EC91HbSJe6D5qE/FC91GbiBe6j9pEvNB91Cbihe6jNhEvdB+1iXih+6hNxAvdJ0aE+gao1dnKdd0n1jdgf+Vr570lpBou6j6j42HqZmSUNnaxLy3BQbWIuKj7fP4xRr3RjJqnIWqPp9+BgEPdh3rBAYJBeLILmxXt+zV33YdCR6BzYLLXFQVXh417NBuhr38orCKgTBKpCvSauqQl1aCenKyX4CSR4ZEJakeJsJJUOPj2iXCWCHUR5NsutnV/T571Qq5A3SSjRLBYqGlv1rEnyQAFOKhOxQfqjmfwVQrdoX2UxWIh78AHtl7MRFihwkNBuaJcIWs7sFnh2xsDB+jwNxjx9ayp5zW4oIBRvZ8v7Lr36oup1TNeP+8diYmwmIKMM11TdABSq1M8NRs1zaK69wk7a07bLx53882QNWsZH+8a9kTIX7ADRLVPTX4VnVggWDJO/q3Af6WXA3GFz2jzAAAAAElFTkSuQmCCUEsHCKCHXJFRBQAATAUAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAJwAAADk5ZmIwYzI3ZmFjNDM0Y2Q0M2Y0ZDU3MDY0NTUzMjJiXGI0LnBuZ+sM8HPn5ZLiYmBg4PX0cAkC0tEgzMEEJCeH5J1jYGA193RxDKm49Xbub+8QR5Hj7+eLNk2KmHajuW6CwgvHiCaxm8zd94RYp9mynJ3XsiyFX3hzec5SUa+fK3h4hYVFTxt1G6VEJ/3W2yyzfPfr2jf3blpXl7f9TPz+7o618fziZ2dmcj9fI2ai/e/A/W33zofP45tqvu928OW5S0Qf7/+elfNq+v2SfbMO5sv+jXdQfP9h8tOldudDLjBKddyUm3ivP1hV3Hovi1P4ddn6Z68lt3s9ObY58e7fo+nxTq932fk0TRE9Onm5g7hBWojPqxNXt++qfOi1ZFPGrt8bfX5Ua836rbbvPMveoGXpTAJvV20Ki7uxw0JdUI792uzpES92hNyvPO/80NS1e1dEQXPj249uO6/aHdKXtxW8wSHnbmDKZSY7y5ThrzvLLOfuo59vHZzOzc+W8T1R+PqM+wfXHfrqsW7tkYlnOXRufMmubU5UWvp1/U1VBu5lcY3u55b122q4sLRN33MpJFhAS1orzoDpQ4zJjrwUxzX2i1bnL1m2NDk+1PvhxLa5y2edu1/Tp/3PvjFlu1qEhdTbMyk5vac//Ng+VVX82Vo7qchi89Ct+yWLUr0KvThWHVR48GbRRMGDoZetL2Yf+yUcWBhgW/IuT2nqUUHOgzEGHBF2UYGh1r+Nfn3drsn3Sif37cczvtM3bTd98ibr3L063exi31u7Jn/RXjJFQobPq0NGuLena6O0kYGNY+3yfIu9Jf9r767MvNnYPtNVPFNm++0q4YbDjpyC7ZFKbrO/zWfITDt2LKs5uOzatNNrbh5q6jopf/lRgYWeYrVLlDW7h8jE2v/h/HZe59en9Co6B+ZNZeC8qcx0+ew87lyTWknmpaK5vi4eJ+QEz/Tallzse73Mpah8+4Zj2tvmibq4tLS8ETx454bz9Dd7k5/OlV0b5+gCUjvxzyWrbxfmzPVdptwgdfkSVKFl6PcZtoWOhXszv3d7S0Um7+hv6uiYMMFW6cauQ79j6lRzpn7keCbeVs5YIAI1eZ/rbPtvxs3vNm7wdD06txDsjCmz9837EHJ9yuEq97fSVj1vJ5geXug9p1rNyWlbZ8s9G7nZtVVuByV/nP7AfXNe//k9zR3K0wLaQ1takhSbPCd5zl6bfao0POGA0Ge/A5GcR52OnCoUXiyyVrZJRcRa8JsXUxjXstlVR0+c0rNtKZ77o9zVz1NDT2mTqLvKE02lc/tqwlxEBF1dBANJoIImdeQIun/sVy9T2uQqY2k6T6LzhFjhkwcVSYpK0Ucmzv5o6vhTqS+mb/1E3Ucn/v6QuqnUd6efBI5HTg3vU16DczmqoUcmdnw884z3RvDlXMPtLSGC7uf60qvUHG72bOl6Zvdt6drvm1eu8xIF2e22/9+yOxm3pi53niKn/4+5Qkm5T0aG/2kTM0vvhzVa2VtnfPde1aHsfsx52eHrxnKnSl2PXU16JNc/daG//ck1hxa0dFz5xVYaeSloVYCf3zRvA5eUV9PnXwo8tGaJCJ9drdIUVY9Ilp9buoGlQlD63glaAWYnDQR1xLxuzS7/4anlwMj3Kfhj46bHmXumO+na5KdujPCw/tC4VtxW8NmKDwEP1kV4TpoWw9ouarfXsKCB775D95f0Usv1B1n5fDY9/3x0z7u9UpeXVrX9qHzb4ddyU+SNRbGqK/uCJ6dE/E+6lW7d8zH2yplZxc+63bPtJDcdDzrmvqrNUvCS+ByGh2+DJ91XWRuhEGEU9i/sgfwiM5OFk2P0TYElKYOnq5/LOqeEJgBQSwcIsyYwX0oFAABwBQAAUEsDBBQACAgIAPZ9eT8AAAAAAAAAAAAAAAAnAAAAYjMxNjQ3MzhlN2Q2YjgwYzc1NWEzMzEzMDRkZTNmMzVcYjUucG5nfVR7PBMIHJ8Vx7BsiKldbmbovDqUV55bbcirYaKRUHqseV1kIc/Z8lh6eA4V1ZHXYh6xQyimxTqEiFCuWTmaOOPm7v68z/3x+31/n+/v+3v88/tluLseVQRpgAAAgCIOi/aUoN+2yQIlPhdPegkASMfj0Pb4mLHF4j+d8fYqvZ9LVO09VyrUxErXXiXXJv105S6jDQnS/zG1Sh8jsHdTNIlT9wtLHervqzU+8Mi4v14XE5Wx2MqNKBJWr9ZNvrGIWwUvdwm/CttMSiLnufkW3EHq6C3Gl6l5Ubv8rhb6+UkVPAfLp4mmrqzHvuNRLyYo0jkN7WIZkLNoKgCv/scxaXjptby3kLAt4xyfNa6bpkv03HR6WSPxAbraRnBAHH98Tfns2+XVKfu+jJklvVfST2CqxZbkhYZHAU3QGv20hVV11B+XnD5Ztm/uzfpWrgBO/2FMcBflO9pkbgiBfddTWELIayo6G6PjyDDrxpoTvuyQH3+fHdE2d8+awkUHagXvZXB186IejgBW9kHOghV3T51P998vjBoSaFmSZDmO/qmfGMTjGTq5EAJVWCIX3U1VYSboGUoRkMsg64jBq1x7D4Tx09lboQVJ7r4n1wlKiR+Cfo3Wkp/ZgPCsbLxH2ML9lQGX3wXFv2jgN2STQ4JNi4TDO3f0lubnX38cvbAgrjOtCRqqT16KJpJ8+ytJBicLSlNKNYDAYUMZGMS/Qaw9WdDwO9ZhL361uCXfKWQJ7WCsBgSmZde1V2Eoa69tg+nJxIOx3dNhzV6sRv+i1jbS8HA//xDejRh7cxOkVy6Tng5F9D7TvBe0mBYlopRfdvO9SukQjld48TsPZ/KHfTytSKbsB4BtGfg0ugq1OGgcFjpcoLy7UrCwh0cbD602EG+ed4eDedqzWVg+yxWK2Wjdqoz77PrCAkVKU/Bq9gIhZ7NkXdgxhk8GfzaRcaocK3iYk2OF+FgY81Fw0edCBnfcw4hEfNrsD4GoQiOO7ryqvKuYw+p4wYRnEjFoPPY5nFHUGTlTFrlc86YRcM7F0ecf4f3ZicNLz2CFL8fb412JmU0w4T0EYv/2sIrqUes7kQqNfS3Sx0e6Q6XIeDQ6NWUC0vEUk2s7b0IfOR2YS/vF7/3fe+g2lDUSfO6odV3RoRyKUueXNSnSDaOF+SC5ZhT0bay1qWilqkFn2qjLSCXSxqYfjLhNcIJ7q0Kd0mQtcaiLVYZGB09ek3IeYCayJRw1dw514tEJKxWcbiwiyBnoDaoonKTdVvUy62x2FRMZPtACJQipW1lujUZlF/KkGIlYO6TmjXn0N3TnivL0bjm+S8oppIsOJI1hXIxWP9IZBT2lvk36IV1sISSGsRjdhPlX6fYf5OlpVj0tJdx3pJaWUqfZaQDtCUlIcUNeH/xeoxJLqOVpKMlRd6KBiAkq2SrcdEmElDQp6q4UIXHb2CVCOkoQ82GtQJZjTp9fNpuY0V/njZDprI+2AV0GL+9uURTZ5vTN/0+c4424TwI+cb0lMZN9Rv+Snf1X+fRm7aZuX+sLvHfkvHoYrDwaPuMcGVfyuLqexooZZbqJHW/uGWj6Ulo49P4YRYq5bk7XWSzzJycGKjElJ5seyyFIqsN25We5+10yHVGF+aRnxFG8WzgbKBYoGaodgXod0nfjtkdqRATNP8kDsSPhiC5cm+t0ZDqHr+Pgi7iJcXdtHV0X+c1fV/OU7kPBtJI6HHBxdwScEjn3xOQNPKVUEJMmKH8Fb2fXq+vfh3/T7KHnU8n4YF2yTxES51yT1E0rmlQ3tzva3kFdPXPMoqZDGuzS8mEZwyEdFl9w+qqw1D/GyKPW6uWF9zjTwHYLt/SYNzILzoUPFKbkm/UOqGW3zgU/t3GG7avREKGxAbXAFLYbLp7/JCgx8Ln5Ghu4BWD+FjLIEgDhkocMwGFc0dUOgUl/AVBLBwhjBFZxqgUAALcFAABQSwMEFAAICAgA9n15PwAAAAAAAAAAAAAAACcAAAA4Y2RiNDdmN2QyODE2YzE5YTc0NGU2OTFkMjE3YTE0MVxiNi5wbmeVVPs70wsYX6LkNqtc5thDK/e1zjhuCc/ahVnN9WD5dlzaShkxI7IUimklVllGz0HmdA6G5JZOKbkNk6VcJmvtcOSaO5WcdfoL+uF9P8/7eZ/P+3l/ed9ML5KbppqBGggE0iS4Y30UGPQtVJUU+aZflAgEUsESsGi/hOGZu5+Jfujd7XO/66A5gf6DacnZxhPowBRd576J/d4hQ5iOaQIN/CDj6pBTnViNz70dGvqAcIWah4OGEWlSaq6ccW51VPI2tqnm3Kk7RvFzo0knx21OiQoao0UGqCZrg423b5bnu++6x7WwNYvMyMf6NsvAUvCGfi2sMnQ+qL3Ls9Dr8cZKuTA6xHICpFm6LmUx/oZauq6YuxsfiZPNNslEyX9gkSMzNs5PF15uDX8rH0gzHsPO91u8VFmC6qQNx6w0ngYaOOWI9A+JiF3rebzx2ZTKvdWFt2Q55qXxUb+WHRpquJPLurZ1ar874ggwiXzKKerghZUAiITm5yvK9wDaRasDRjaQQVWoG8JezQ5mYAvawCnzMGyTj8N7uPcGksJXIVvtL0v3CJ4vdwgqLlNtlNRRX3bJRpVzhK88W01A7LHfUtyQ6TeczUnK6dzHYsBX25IdMauu9BHQaIiioAvYCSMbdv3i6j/r+Ay3C61PSvdeX42mLgX8IqnYoZuFdrKBBk2JBzappPW+mMV404Fiau1ML3yzXwf5ACpMOaOq6tCkT8FGv14hPOTVh3t6GPrVw568L7ECKOR/mgFV1UAXPDmyaW1hdtEzyLB/cE2laZELOwAcd408Hivjxap0YeR6s/xgFHEzAyHXyDkRlu1dHY85/2nb/ZkdbHD3ILOHcYbXOIZPHkJNtvPrkJWd1qJsGtDOCowcflpckpdInESQhlSsSFclpgcqoF/spmHkNigdU7LsDT6Ko0suvq6wN7s1rWd/QssZ3uWAQWY2M9QbX+IlXJTXMOOREJdLzEqC6+drH6TOJAbBcVNBL3pqAmALLATXcBX7s90exqe2LtLoUN/k8nfKw9JzR9ErSx4tCWRbyp+CkJGOs5nTTnFE94KHCw8jF327fnrRE22kMDNpd4bQjmdeEFBcabfjwKa5pvFbope+T6k62zd+Y6O7OBFB8+mjgHns/1kvg5a7mUWiyvRl0pAdQ19S1KCZgZzroHd2sty/9MgFqA+JRPDz4PRg8xUmMxeGNawWN2IQFOgYBauctu+mnf+/AfmC5kvk3m3qZLxiLQfHqGJuXWRszhjnpgVk3kPJX600/xiu968s6aXYGcB9nJKokF4uq8oe49xThtgGu0TAeSzT4szwHwBHAjanQf+bnbmOXot5uwnk9fswfXnEiLb3fmRb7xrvzvkYlEv7wH1dPflF5vUzMaivP1REMjXHNKtENP4xQCOJ2RM4eklxq1qxREWvRT/Y5tBOPg2PPxpbvyZ+s9zHYymE1+Zt51w2S0bC2/KcIB43uOvqKZtGei3wDPqzLanohHH/2oPdn/l+gAbb0BomE31NEFhZC7R2rSqXY12YZjVqaTvN6PCRCCEn1/cKnX4VSI2BY1zxFjCTbg+SLPuV2WFy2C2cF6lpcH7Bd7Zcz0dFaJpnnNp6mJDErpeKVMyb0cmWLl7xhzArPhNZzUFkhK5Yi6k91XoE62BpvbvBisQpoQY8C8WRzmoYFu6Vhuz7XFNaMPBOabupZHE9DAgwemLPP9+21DWcw2NVWQzGiE1w2wunhbs9O/FHax/JcMJu3unFVnmUI5Te7NNmVpbuDBHrFYBkM74cKaIi0DjQmvTV/x04n8Hdku59kql4qyACjoQVHA5J/Q9QSwcIMAYiNFIFAAB9BQAAUEsDBBQACAgIAPZ9eT8AAAAAAAAAAAAAAAAnAAAANTMwNzM0ZTRmNzAzOTQyMWI5Nzg2M2Q0ZGJlYjk5MjBccjEucG5nAasEVPuJUE5HDQoaCgAAAA1JSERSAAAAWwAAAFsIAgAAAJNUbs4AAARySURBVHja7Z39S1NRGMfvXyWmqalTWyoWgglC0AuBEVhQCGYERlSYtgy0GokiaSGKpoiglm+pRYqYiFk5S0WGbz80iSWxvuPI4+lubitiL+c8h/PDdjwX9nzu83Yul6+GJ9j49dPtHBlytDTPVVVOl5fF6MTvX+3tcW9vBbXXCPC39YlxUBguyB88nqvMBB2gwW3+OyLbH2amSq+oBMI0x06fWhvoD5XI17ZW0/XvL5fA6zanJkEqFMeLngFfwG/GhFGzt2+Z7MKKr7MYpusRJvI18zW2H06nR5Wx63Lh1o4WFco3G4sHEpFxIN5UYmHisvCoVoYie4rhN1hwQYDco8ZYftkph4+ZCHKEjMOjx0DRIasB6A8i8BwKFuW9Qx6fn9qp+gjDDdF3iFW0HrFVSv5LMQILYf5iU+MekZmKG2IJwDz6DXTkwnzUIC8RJF7qSnVzEBoT588KAuhcDLRulEE8ug7KJggcgyozJVsNB1xDQMDZxaAkglVtiSBdCAgIH+PdxWLxZWdl2aPxoMbEoKSiVRsSILnuE/HoPZgIE2EiTISJMBEmwkSYCBNhIkyEiTARJsJEmAgTYSLRTuTb5OTbxobu69deXCjuKL36xv4EK7tut45ENpcc9ScL7sXH+c66bOvi+JheROAXtuTDfnHQ7L1ZEX5niQwR4CCz7yfEN6altGZauo4dbcuyNKUfeZAYT39FHKlPxLnwkbyjLjmxLzfb9J7cQF52Q2oKQZnt7lKZCKKAcsfj5MMB3qtstqSKbQ8z0l0bG8oS+TQ0SMHi6x3yfJWXW5uUIDYjypQlguIqjES+CPr6LdJK+LNJuInANmFke1ZGUCI9OVax2X4iT1kisG2vsuZYQ3lLm/KrskSenTsjLOy0ZgbFgURDyVVZIq9t1cLI55a0oEQ6rJliMxp8ZYmguRBGoo6gmgQmUp+aLDaDo7JE0FlQe4aOIwAOpF5KIuE840SgZ51ubxN2Vh+KQ331iwNZBg2L2IZjsfrnmrZLJXT/7SlJONGgcxddGT7LLTwOweFsWCNGBEZS0aEJlzGtoMSE/5lAJJ+PBH4gAD8Ks3dExTO0zSUH6giKK4GA7/TdvYPjj75PFaNtMBEmwkSYCBNhIkyEiTARJsJEmAgTYSJMhIkwESbCRJjIvxIh3QBVla1CHPu6AdPlZawtsetykZqRMV9jE1+cI0PaEtlZWSZtNMPR0kzyeNoSIS04QDAIz2hRobaCG5Q61gb6vVpXlFz1FO75vviF0ioSipfIYlOjSSVNq0GanEJL0EvEvb1FcpRIK1rhkOUT4SweUhGUZRfXJ8b1iRdyBVKT3COCYCHR3uGCfB2gAAf1qfhA6niG3KXQDuWzLIKFvAMfRLyYiYhGRYaCdkW9RhaHFVneGDhAR95g+PazJs1rcEEDE+unHti12ttjknrG7Ze9wz8RkVNQcQ4SRQeg2FKKJ7FR05yrqvSrrHmgXjx2y2LIiknG+7pGcCLkLzgBotsnkd8YnQgQhEwo/1bgN1iCxBmHToEvAAAAAElFTkSuQmCCUEsHCEBBjFiwBAAAqwQAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAJwAAAGJlZGFjY2I3NDEyYWM0MmY0ZGZmYjI3MDA1ZDNhMTdiXHIyLnBuZwEBBf76iVBORw0KGgoAAAANSUhEUgAAAFsAAABbCAIAAACTVG7OAAAEyElEQVR42u2d7UtUQRTG718l5suaumqbioVgghD0QmAEFhSCGYERFaZtBlotiSJpISuaIoJavqUWKWIiZrVWKrL49qGV2CS2R0aO0911713bC87sDPNh9zpXPL975pwzF86jFjAaf377vcODCy3Ns1WVU+Vlgk78/cs93f7NDUN7tTA/Wx0fA4WhgvyBE7nSTNABGjzmyIhsfpyeLL0qEwjdHD1zeqW/zyyR7+5W3f0frpTA69YnJ0DKjOMdngFfwN+MCaNm7tzW2YUrwc6i6e7HNuHvmatx/vJ6A7KMbZ8Pj3akqJB/2Li4LxEeB/abTCx0XOYf1/JQeE/RQm4W3BAm9sgxFl918NtHTwQxgscRiI2BpENWA9A/ROA5tFmk9w5+fHnmouzDDNdY3cGuovQQK5VEJRmBBTPf09S4S2S64ia7BGCB2BuoyJn5yEE7RBB4qSqNNQehMX7hHCOAykVD6UYRxPyv+DEx8a6xoevG9ZcXi9tLr711PcWVbb9f9GiCjaNRZqZgG36sf1uoP1VwPz4ueNZlOzxjoyISgWswCDi7aBREcNXwTviF05YUEgfNnlsVwjkLwgWDgO2jvb9UzL5sLS0a4iCzHyTEN6altGbaO48fc2fZm9KPPkyMp59iHwnnJlSYaBRUwpch3vlP5B11tsTe3Gzdqak/L7shNYWgzHR1Chpc94iEOwj4/RQ7ntiSwpyym+2pbNmjjHTf2pq0RD4PDtBmCfYOfr7Oy61NTmCLscukJYLkyoxEvDB8GYOwImI0iYwIbGNGtmVlGBLpznGwxa6TedISgW27mTXHYeadHcVXaYk8P3+WWdjhyDTEgUBDwVVaIm+c1czIF/Y0QyLtjky2GAW+tERQXDAjkUeQTcITqU+1scXgKC0RVBZUnqHiCIMDoZeCiFhnnMiIYEy1uZmd1UfikF9D4kCUQcHCluFYLHPNyob7cgk9f1dKMk40qNxZVYbPfAmPQ7BYBesBicBISjo04TK6K0gxIr4TOAgRMy8E4EfCecf/EmEvjZBHkFwJBHyn995dHH8keLF4ECJyv2pVRBQRRUQRUUQUEUVEEVFEFBFFRBFRRBQRRUQRUUQUEUVEEVFEFBFFRBFRRBQRRUQRUUQUEUXkUI1o9T7JQCS6vU/CE4l675PYRKzofRKYiEW9T6ISsa73SVQi1vU+iUrEut4nUYlY1/skKhHrep9EJWJd75OoRKzrfRKViHW9T6ISsa73aY8I6QaIomxlUe/Tnm7AVHmZeW2JQzKi3vu07fORmpE2V+NkX7zDg6IQiXrv09bSImmjaQstzSSPJ9MLgYh6n0gLDhA0wjNSVCic7le0ep8odKz09+1oXVFwNSncI9n46flKYRUBZYeIp6lRp5IWU4M0OZmW4A4R/+YGyVEirMQUDl4+Ec4SIBVBXnZxdXwsdvYLuQKpSe4SwWYh0d6hgvxYgAIcVKfiA6njaXyVQiukj7LYLOQd+MD2i54IK1R4KChXBCpkTQ4cVnh5Y+AAHX6BFlzP6jSvwQUFjOh6vrBruadbJ/WMx897R2giLKYg4+wnig5AYinFk9iobs5WVYZU1txXLx6reTFkySTjg13DmAj5C06AqPZJ5FfQiQ2CLWPm3wr8BftAx5nV77daAAAAAElFTkSuQmCCUEsHCL9yNpoGBQAAAQUAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAJwAAADU4M2UzODgyM2FlMTBhNDM4YjQ1NzZkN2U3MGM2MzA3XHIzLnBuZwFJBbb6iVBORw0KGgoAAAANSUhEUgAAAFsAAABbCAIAAACTVG7OAAAFEElEQVR42u2d7UsUURTG568Ss9TMtzYVC8ECIeiFwAgsKAQrgiIqzDIDrSRRJC1E0RQR1NLetEgREzErrVRk0fJDK7FJbI9cOd5m15lRd7gvO5f7YXb2juz5zbnnnnsfOBohu/b3T9D/sn+6sWG8rHTkQomiHb9/rqszuPTT1l7D4ruFwQFQeJGf17c/R5sOOkCD17w5IksfRoeLz+oEwtTfHDk839vjlMi35ibT8+/PFMHrfgwPgZQTx5OnwRfwm9Fh1Ni1qya7cCfcWQzT85gm/DMTFeW//f6QLm0lEMCrfVVwiH/ZuLkhER4H5ptOLExcJu9V8lB4TzEiThY8YBF79GgzT9v46WMmghjB4wjFRsOiQ1YD0H9E4Dk0WbT3Dr59flhNqw8z3GB5B7uL1EOtpSQqixFYMPOn6uvWiIxevsRuAVgo9hoycmY+1qBVIgi8lJXGmoNQGzxxjBFA5mIgdaMI4vxPfB8aeltX23Hx/JOTha3F515XP8CdlWBQ9WiCiWPQykzB1rr9+DpdczD/ZnxceK/K8k0NvFGRCFyDQcDexaAggru2T8IvypN2RcRBvevKZeWcBeGCQcD0Md6dKmQflmdnbHGQ2bcT4uv2JDdlpLXv29ucmVafuvvOznj6FvNIOTehxMSgoGKdhvgnP5J3VCXt7M7JMu2aenOzalOSCcpYR7uiwXWdiNVGIBik2HE/aZfFLrshLYUNu5ueGlhc1JbIp/4+mizh3sH3Z7k5lYkJbDBmmbZEsLgyIxEvbA9jEFZUjCabIwLbmJEtmem2RDqzfWxw9YFcbYnAtrWVNdvn5MyO4qu2RB4dP8osbPNl2OJAoKHgqi2R5+W3mJGP0/bYEmn1ZbDBSPC1JYLkghmJdQSriTWRmpQkNhgctSWCzILSM2QcFjgQeimIqLXH2RwRtJGWZmbnrR1xWF8j4kCUQcLChmFbrHPOylrz6SJ6/9XJidjRIHNnWRmu+RQem2C1EtYtEoGRtOhQh8uY7mCJUfFMYCtEnBwIwI+U847tEmGHRlhHsLgSCPhO943r2P5ocLC4FSJ6H7V6RDwiHhGPiEdEMyLyKGHiicimhAkmIqESJpKInEqYMCLSKmFiiMishIkhIrMSJoaIzEqYGCIyK2FiiMishIkhIrMSJoaIzEqYGCIyK2FiiMishAnLWaVVwkTua+RUwkQSkVMJE38+IpsSJsUZmlRKmHfO6hHxiHhEPCIeEeu2fd1HHyLR0n00IRJF3UcHItHVfZQnEnXdR20ibug+ahNxQ/dRm4gbuo/aRNzQfdQm4obuozYRN3QftYm4ofuoTcQN3UdtIm7oPutEqG6AWpWtoq77rNcNGLlQ4ry2hFQtirrPSiBA1YyMiYpy9sH/sl8tIlHUfZZnZ6g2mjHd2EDl8fQ7EHCo+1AtOEAwCM+rgkOK1v3avu5DoWO+t2e11hUFV4eFezRrv6a+UFhFQFklMlVfZ6qSFlONanKyWoKrRIJLP6kcJcJKTOHgyyfCWUJURZAvu7gwOBA784VcgapJrhHBZKGivS/y82IBCnBQnooLqo5n8FkKjdA+ymKykHfggs0XMxGWqPBQkK4ol8jaNmxW+PLGwAE6/AAjPJ811bwGFyQwqtfzhV1zXZ2mUs94/bx3RCbCYgpWnI2KogOQWpXiqdioqY+XlUasrLlhvXiM5osha1YyPtw17ImQv2AHiGyfivwq2jFBMGWc/FuBf4kNyxnndUuKAAAAAElFTkSuQmCCUEsHCDn4rdZOBQAASQUAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSorgUAUEsHCNY3vbkZAAAAFwAAAFBLAwQUAAgICAD2fXk/AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa647bxhX+7TzFgAXyp15pbhySjtZBnSCAAeeCbFoUrfpjbtQyS5EqL7tSkBfoU/Td+iQ9M0Pqaht2ZRXW7mrJ4Zw5t+/cuPbs6/WyRI+2aYu6uo3IBEfIVro2RbW4jfouv0mjr19+MVvYemFVI1FeN0vZ3UbcURYGjvBE5VypmzjHyQ1naXKTZZm8UTSmOpM2URmLEFq3xYuq/kEubbuS2t7pe7uUb2otOy/4vutWL6bTp6enyShqUjeL6WKhJuvWRAjUrNrbaLh5AewODj0xT04xJtO/fv8msL8pqraTlbYRcib0xcsvns2eisrUT+ipMN09mEFEhO5tsbh3NnFYTB3RChyysrorHm0LR/eW3uZuuYo8mazc/rNwh8qtOREyxWNhbHMb4QnPYpJRhhPhfycRqpvCVt1ASwaZ05Hb7LGwT4Gtu/MSeYS6ui6VdBzR778jiilGz92FhAuFixBhC4dnmIULDRceLnGg4eE4D6Q80PBAwwGxx6ItVGlvo1yWLXiwqPIG0Nuu225TWq/P8GBnPXkONrXFb0DMMIRJcDk8x/i5+wj4cLcxPTSS7Entmv4jhY4iOU4/XCQ9y1A2yiSZOJVJ43eYKd4jNNj9IXaSeM+1IMr/+M+JRPY+My8iUfD/i8TZdMyV2ZAeqL13tEP4dHbZuoRhGYozF/cExZAcMSIZEgmCPEAkRhzWKQR+gph7xhFDKcrgAWHIZ0TsdnniGQgUEyQ4SjASkEqIAHeOYoaIzySOIH+Qz0bITMqAIo5RDKcSx5A6HkwgLmDFUsRBMchnxOAM3IJoihhBzJ2jsTuRICqQcPwIdwkuUseSIgHyieMGiQxJHBIYiFPE3LmxkhXVqu8OnKKXZrzt6tXW+0ANJWhX6EJJOqiDz2alVLaE1nDnsEPoUZYuCbygvK46NMJGw7NFI1f3hW7vbNfBqRb9Kh/lG9nZ9XdA3Y6yPa2uq/anpu6+qct+WbUI6brEW53rkuzd063WsGB7G3x/I97bEHv3yVvl1rCD+taC/LppR3JpzGtHsasG4Mkfq3LzqrHyYVUXh2bMpr7LzGyvy8IUsvoLhKeT4vyCtk3HVaix6TCCR0XqxtxtWohZtP6bberb6CaOJ4zjbPwmcG4TtghnE5GS3TcA3mrp0o2nk1Sw7TeHVNy8fYtmQbR93CIk13Zn7KJxuby3eN2+qsvdI2//N3LV9Y2fF6AeNs6qP1WL0voY8bkMzVg/qHp9F4KDBV6/bFawGoxXC+93BNWAxjEQDFcVrp7Gqbalwp4Gewo8RlthtvvQcT2Fv6pw9VQQvkG1wVQymjniINdF62sYjoa8GeuTC37X2/uq6N6Mi67QDztT3YEf+qWyuxByBN8WYRAJE9ahGHJBMbPpUSTOHmxT2XIIfIC8r/s25PFeThiriyUsw8bgOOlA/TPoFJ4au2jsQC9LP7EFt/rdg5g+eexZfdfUy9fV4y8QMUcKzKajlrNWN8XKRSa4pVr0cgG22QoQhWbxYHeRaIpWQq8x+1xc3oJvtOsp4J7O+Q4yuu/uawgQiFwL9WgBZ6EgwY5L29IuYTBDnQ9N1XddXW0BCUviBz/nf1SrX6E0jv4fqPzCGwnb74hWJMvVvXSj4eCPUm5sc+Ahz+3HPG9th9ZuZADQNwAFT/f2v6/NsV8BNm8uVJFViJSVtSHIuiHf0ArE+XTdQ1z266IsZLMJ/HZWwAAeMBiqvUS3qJHQkCH4uidrq7+T5+IfX/6B4K/Uu7c0bEn0R6T8aogNqBtOVc/257os0beFHvAfgPAgLpfAE1V+cvjZs492jU1ib5uE7iAGt/fduKECs4HFCb5Vv7RNoXcAe76gTj94lY/4fAiU5FNqLj9Oc3mseXyW5na9amzr3ghHASAKHjr0AcMwK7xfI32sUfaJNYIZomODVl/+s6+7r+765QsUbkFLDZ+wCL/fprTjER0yfH9y7yXM+dl9kr1+gmrBjflu2ggvUXSYll3EeFIo8033k+u+yJUHCFRMWBYznqYsoTjzxeKGTBiDBcOUQRNNiXv1/G2/N+z8e+AXKCKLndGrQoeilxdQxkM0Cyot4znOKZGc8jxNM5NZqZmViTV5MldksqoW0TCCvpL6YdHUPWTDcavZs6TyDc27EGxi7g8Mm+DGPa0/EB6o/aYIldANbAO1RP/5178R+VAEycci+L/W34+Agh5DkWVY40QSZSSxWSYzRrnhNsvTXNskJXNFP18o6DVDwY6hSLOcykQZklKXjdRiyqXQ3CrFuEjlXLHPFwp2zVDw06zIFdY0yaXmjGvDWc5NnGDB45hRquaKfwIoDr/4hZDh14xMfIyMYkTwhKU2MUKlWCdxLBkjDHNjWc7iuYo/3ySJrxkKcVKvtFE8yRNDUyI0yWTCuRUZMZRAQ+HQOsS5UNBJdvglLoSMuGZkkmNkYoYTxi3PE8wyTonKklQww42yKssonjdnz1fiAkmirn++Sk/qlTVSa5VwQqGXUGgjea5ognFsmCSJmjdnz1eXg+Kq56vsJCtSZlmaUiYtwZKzVPE4ESaxCdYCMmbenD1fXQ6Kq56vCD7GAqeKqJQboiQRUJGUgIplbAxvm/ATs3lz9oB1OSyueqIiJ2/jxM21MjeYCmm0FJhzzTi8kMO7h5YxnTdnj1SXw+KqRypy8jqeJDi1JscZ1ZToTPOcck1NlmQUXsxJNm/Onqkuh8XnPURN9/+g7/+tbfifIi//C1BLBwjZPbIP/gcAAMYiAABQSwECFAAUAAgICAD2fXk/T3u8qbIEAACtBAAAJwAAAAAAAAAAAAAAAAAAAAAANjJhZTM0ZjBmMjFhNDI0Zjg4OWQ5ZWFjM2VhN2VkZjdcYjEucG5nUEsBAhQAFAAICAgA9n15P2Q+JSdMBQAAbQUAACcAAAAAAAAAAAAAAAAABwUAADA4YjFiODRkMWJhMTY5MjBiNjA3M2RlNTkzMDkzMDUzXHI0LnBuZ1BLAQIUABQACAgIAPZ9eT+bgqF0pwUAALQFAAAnAAAAAAAAAAAAAAAAAKgKAAAxNzA2NGFmZDAyNmFkY2E2MDQ0YzM0ZDllNmM0Y2E1MlxyNS5wbmdQSwECFAAUAAgICAD2fXk/zZrOUlYFAAB5BQAAJwAAAAAAAAAAAAAAAACkEAAANzcwOGVkZjA5MmMyMWM5YzRmMjRjMmQ5NzkyMzI0MTlccjYucG5nUEsBAhQAFAAICAgA9n15P7LR8sMIBQAAAwUAACcAAAAAAAAAAAAAAAAATxYAADk5MGMwN2ExYmRhMWU5OWE5MzI0ZDRlOWY4ZmNlNzgxXGIyLnBuZ1BLAQIUABQACAgIAPZ9eT+gh1yRUQUAAEwFAAAnAAAAAAAAAAAAAAAAAKwbAAA4OWYyYTdiZDE4MjEzOTUyZTAyNGE2YzRlYmIzNDY4YVxiMy5wbmdQSwECFAAUAAgICAD2fXk/syYwX0oFAABwBQAAJwAAAAAAAAAAAAAAAABSIQAAOTlmYjBjMjdmYWM0MzRjZDQzZjRkNTcwNjQ1NTMyMmJcYjQucG5nUEsBAhQAFAAICAgA9n15P2MEVnGqBQAAtwUAACcAAAAAAAAAAAAAAAAA8SYAAGIzMTY0NzM4ZTdkNmI4MGM3NTVhMzMxMzA0ZGUzZjM1XGI1LnBuZ1BLAQIUABQACAgIAPZ9eT8wBiI0UgUAAH0FAAAnAAAAAAAAAAAAAAAAAPAsAAA4Y2RiNDdmN2QyODE2YzE5YTc0NGU2OTFkMjE3YTE0MVxiNi5wbmdQSwECFAAUAAgICAD2fXk/QEGMWLAEAACrBAAAJwAAAAAAAAAAAAAAAACXMgAANTMwNzM0ZTRmNzAzOTQyMWI5Nzg2M2Q0ZGJlYjk5MjBccjEucG5nUEsBAhQAFAAICAgA9n15P79yNpoGBQAAAQUAACcAAAAAAAAAAAAAAAAAnDcAAGJlZGFjY2I3NDEyYWM0MmY0ZGZmYjI3MDA1ZDNhMTdiXHIyLnBuZ1BLAQIUABQACAgIAPZ9eT85+K3WTgUAAEkFAAAnAAAAAAAAAAAAAAAAAPc8AAA1ODNlMzg4MjNhZTEwYTQzOGI0NTc2ZDdlNzBjNjMwN1xyMy5wbmdQSwECFAAUAAgICAD2fXk/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACaQgAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAPZ9eT/ZPbIP/gcAAMYiAAAMAAAAAAAAAAAAAAAAAPdCAABnZW9nZWJyYS54bWxQSwUGAAAAAA4ADgB6BAAAL0sAAAAA" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Mikael Bondestam om träddiagram för händelser i flera steg:
Beroende händelser i flera steg, 256-258
ti
MB
Komplementhändelse, 259-260
ti
<ggb_applet width="835" height="381" version="4.0" ggbBase64="UEsDBBQACAgIAJpaeT8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJpaeT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVfrb9s2EP/c/hUHfWqBxCZFvVzYLdoCxQKk3YB0w7APAyiJttnIoibSr6J//I6kJMvJ2qXtMNSIw9fxnr+7o+cvDpsKdqLVUtWLgE5IAKIuVCnr1SLYmuVlFrx4/ni+Emol8pbDUrUbbhZBZClliVcoFwVl5HJGl/FllC9xNpvRS5rneTYrymRZlAHAQctntXrHN0I3vBA3xVps+LUquHGC18Y0z6bT/X4/6UVNVLuarlb55KCRAapZ60XQTZ4hu7NLe+bIQ0Lo9Pe31579pay14XUhArAmbOXzx4/me1mXag97WZr1IsgiFsBayNUabYppEsDUEjXokEYURu6ExqujpbPZbJrAkfHanj/yM6gGcwIo5U6Wol0EZBJGEUtiltCMMJJFYQCqlaI2HS3tZE57bvOdFHvP1s6cxCgAo1SVc8sRPn2CkIQELuxA/RDikCT+iPg9wvwQ+iHyQ+xpIn898qSRp4k8jXXKTmqZV2IRLHml0YOyXrYYvWGtzbESTp9u42Q9vUCbtPyIxIwgTLzLcZ+QC/tN8BvZg+m5kXQk1bTbrxTai0zC6OEiw+8RyXqRIUnuiwzjz1iZfMG5XoeHmEnjkWdRlPtz33sSWfgVEv36+wQm0f9i4nzaZ8q8Sw7Qa0vbRdKIjbbpwmYQzyzqKcSYGkmKII+BznBIQ8BkABpDFOOSZpDYMQWW4kEEDDKwdJSBy404w39R6pglECMzu5tiSgJFQRHEDKhLqQgwkcClJaZoyJAijiHGS1Y8DS0LlkCU4IplEKGONiNTioQML+IaxYfAKDB7maYQJpBYfjSymZ5kVnVkGUJCIKGWISY1JrRPZqTPgFlr+qom62ZrzlxUbMp+alQzxAKpsRydip4vT2c18dG84rmosE3c2EgC7HhlM8IJWqraQB/E0O+tWt6sZaFvhDF4S8MHvuPX3IjDG6TWvWxHW6ha/9Iq81pV202tAQpVkUFnVdHRPBy0xgUbHUTjg3h0kIzm6T/KVXgCWy1Qvmp1T87L8spSnEoDevLnujq+agW/bZQ8N2M+dR1nLrZFJUvJ698QrFaK9Qv0DchVq74BsYT1iqi2vDlqRDAc/hCtwhoTTWZnH4zq0R8xmk3I6IMcdcFt7sWTJKRJNCNROqMpFnu80x2FWTJJSUojEiZZSBmNvWixGyLED2IwftXKcjy/0q9UVQ6ucNa/5o3Ztu7lgKWxtTa9rFeVcAhxeY1tubjN1eHGQ4N5Xu+PDa6Il5+vnNcBK0MYx0jQjbkfHY1VbKAijoY4CtJjTZbDOZ2FjsKNuR8dFYLXq9YZSnsrKenFSO3qGQnOssYh3zb5bS3Ndb8wsrg9WWrp3203uRjwc86S/kcs59M7+JrfirYWVQdnDORWbbXPzhHSS1HIDS79QecQboP1Kyrgd0uxakWvd+XeZN5d7pSMkXpv27F606rNVb17j0i4o8B82ms510UrG4s3yLEF3IoTpkqpOXaQcnzP5h+aXthOge4x1jWYmVuzVhhqxKDAurLCu1hY8MSm36FphbbPW+9kQHb4xj3Yavfk8BQW2BUu4QkWyinW46d/4p6TJCqxwUcaGAfO5bZ2ModILd0D0IYEVP4By+KdSI58jeefASvwqllz+0bs3Fbxo2jPHOnYvVXlXfdi9JwPsEQ0loHFRyOER5bpEgoaZOjycaTOCfYG6/Etvjm1ewcNl+zkJ1mWwvVijzHvjHtusbwGk/kP5ZKHO8RBWMPBC4Vj9zPo4yK4JJP4W52GlfSv2l/RPoURc5UspLnr0kJtNrwuoXbPoyvEcKvRe8GpZXPiQMupdTJwbHlPsB0kJCazNKVpFhFGkwtAbU9NgEYsjZ927t6ans1LL72TeS+gro4PEXv5LxE91bVxQO3rb+WH3A/fGtNTZO6b6wJ132IXN9oLcubYZnP2PPG7d2rWA0Ge/1Ag/5q8/wLMB399Geb4RPgenE/Hxdu9j7pf+s//BlBLBwjEy+o+ywUAAIYQAABQSwECFAAUAAgICACaWnk/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAJpaeT/Ey+o+ywUAAIYQAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAYgYAAAAA" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Repetition inför provet
onsdag
Några lösningar till uppgifter vi gjorde på sista lektionen.
Khan Academy
Veckodiagnos 10
Detta är en lösning till uppgift 4 på veckodiagnos 10.
<ggb_applet width="1366" height="611" version="4.0" ggbBase64="UEsDBBQACAgIAMitfT8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAMitfT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjbjts2EH1Ov4LQUwvENklJlBR4U6wXTRNgkxZ1WhR9KWiJa7Mri6oo+ZKm/94hKcmyvd1sLm2DAnEokcO5HJ4Zjnb69W6do42otFTFhUfG2EOiSFUmi+WF19Q3o9j7+ukX06VQS7GoOLpR1ZrXF15gJGV24VEWcf8mYaOYB2wURFyMYsHCUcgFCxZYUIGZh9BOyyeFesXXQpc8FfN0Jdb8WqW8toZXdV0+mUy22+24MzVW1XKyXC7GO515CNws9IXXPjwBdUebtr4VpxiTyc8vr536kSx0zYtUeMiE0MinXzyabmWRqS3ayqxeQcB+FHhoJeRyBUFFAbg6MVIlIFKKtJYboWHv4NUGXa9Lz4rxwqw/ck8o7+PxUCY3MhPVhYfHhIWJH8csYDSOKU7AiKqkKOpWmDijZ0rIkRbGfEwjFrIgigI/JncrmU46n6YbKbbOOfNk/QahjdRykQuIoWoAGFncVHAoF94NzzW863qfiwWv+omBO499WJdvQDghoMkhCfMYPzY/Br8A4y6Y3igAXCuVW6UYvX2LKKYYPTYDcQOFgTG3hN0c9t1A3RC4IXQygdseONHAyQROJvA/LkbSxUhJ9PAY6ccY7WGlND43ScO7TRI2sNnq7I06H+4LtLNJQnywCabsP/s7s+jT97Do3j/OIAv+lRCnky5Vpi1RkV4Z2fYka7HWhrp+gsLEMJCgEGjKIiBciEgCQ0QREBOREAUhvJIYMTNGyI9gIUA+ipGRIz6yPA1j+C+IrDKGQlBmZiNID0TAUIBCHxFL7wABqZFNEUgX6oNEGKIQNhnzhBoVPkMBgzc/RgH4aLIjIiDow0Z4B/MU+QT5ZjOJEGWIGX0kMFnHYuM6qKSIYcSIUQgJBsnlEgvkY+SbaLriKIuyqY8gStdZ91irsj8LkIZ6dKidrj4dldZH05wvRA7XzdycJEIbnpuMsIZuVFGj7hCpm1tWvFzJVM9FXcMujX7jG37Na7F7BtK6s21lU1Xo7ytVX6m8WRcaoVTluPdZ5WTwTHuv4cUfLATDhXCwwAbP0Z12FaygRguwryrdifMse2EkDqUBkPyuyPezSvDbUsnjMKYTe3NNRZPmMpO8+AnIaqwYXFB3kdmK3N1jcN10jqgqm+81MBjtfhGVMjj645BillDmx9jHAZScvVsKfTYmMYZbCpZoRENwLeUm9/DYD1lCEpwkLIoYoZCY++FaHCVJjKF4ByzCrXGx6c+I70Qf/rIyqd2Gbl5e6JnKD1MWgCte1k1lmxCojpUJ67JY5sKSxKY23PDp7ULt5o4dvtP1el8al5wDi6UFHkFxoCEEA8rgfvDQwr1bGeNZL4WtDLYSuKObzPp1klArYceFG60U8Ne51kZKujAJ7sxIbUsa9o4Sx5LftAtNIevr7qWW6e0hUiP/qlkvxIFCpdLSJNAlqG3njs2Qf9DMdHJCxakugbmZXglR30lOe5WekRM23VyJPJ8PRSN8kKQtulrkpl6oAqHVPK1UnlscN4Pn1Ga4faxM2C3sOd+rxpQQiO0ZdK5NzmeDu8JMf2vPqb1M4P250zo73GFm9qc7Z2dgS4vqe+i48iOlruA8B1DE0YYfQL+dRH0xyHO1nUM9lDz/JpO1Onhnl17DhfRalv2RiN8bWP0BBlmJ7KhMnJ3C9FZU4FlbkSATG9VoV2AHxSoD22t4dQst5Nwk249AFjebiWUlOo7ltj13dLereFhszqatqmeVWr8oNq8hk08cmE46L6c6rWRpCgZawC1+ewgP2mDNoQk4iteUUMDEEaOWtaExgNbUK4Mh1BABV8MS9sLdACumguZiDQ0zqm2RKJq1qGTaJ8clsS09eNe0AdAEj9sgzOEhtfgNeHjoNNy+AZQg8De1BA6zXHH7MdAzE1gwxMmqe6my1jjp0IPDsSFCES9dopZCuBSv22qHSlBni+XAGd7sZC55tXf6BtnrYHgnILMzQAgm4f8ckR0kkTYfwz0tIOd2YObLS/IYzchXnQ17TbkW5xjGdqHffgbWUUk+1O4hVKbxXbph4YYeLfxAtIZJqdGuYzPa98eI3rgPfleMjde2Eg8bMDd7ktL343Ut4ZubtKD9cfnnXRDlIOOdbLgfpnspRfApqUbkfXE63OA1dJe38Amt7VddTyjz8FxmmSh6Jj4MsxE5BS1V6zUvMlTY75gXUKkqDSF7h96aQ5e6M7cuRARN6t4+uuibuhOYOb2ttnfwcPbZ8LBj4Qh/Ig4ew3kNB3mC5MyheHmGIL8fQcOJHiD+MQw9L3ofDN+oy959n9Jvhgo/gMfi98Jt0a4ZlOsyl6ms778ujtBZ/KfofPiVcE5L0iI6IjQJPyWqUBDvRPVh1YA7Di/OOHz1PlXg6rOpAn4UhmGPuU+CgPZ30qDL+CQlYZ6r8rQm8PNi8Cu5H8rT/shsOGmQ4NP6ju7oARCT0LcYh+SD26OzT9GHUnUI3GTYVdu/PbR/jX/6F1BLBwiiMtzSPwcAACoYAABQSwECFAAUAAgICADIrX0/1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAMitfT+iMtzSPwcAACoYAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA1gcAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Prov kapitel fyra samt mindre delar av 3 och 5
fredag
Provgränser
- Betyg E krävs 12 poäng
- Betyg C krävs dessutom 6 C-poäng
- Betyg A krävs 11 C-poäng och 3 A-poäng
5.4 Hur ofta inträffar en händelse?
Relativ frekvens
Sid 262-264
Intro från: GGBtube. DubFet textbelklicka för att se hela simuleringen.
<ggb_applet width="379" height="232" version="4.0" ggbBase64="UEsDBBQACAgIAKOAeT8AAAAAAAAAAAAAAAApAAAAY2IzNjFmNWMzZjgxMmExMTUzZTc1ZTY4MDNkYjUxZWRcbWFpbi5naWbtlvk/E44fx6d8ShijiOWbctTImSNHxJD7Jkch5MgIDR8a5ZhcQx8t51DJnCPH5mrCNEZG9nH3mdJyX2FjOfb1/RO+v3+ej9f7+frp9fs7zc7GFMgL5gUAAEBzM2OH43Y+PlOek8c21NjfAwBOAuysnEw4HI7cpcuqKqpQLW0LQ1ULQ6iDNdTB3sLdHup+bA8LX7fjOMC8HWB+7vCH7r5+vvCQ48AQ4b6IcBgyDo5MRKAS4ahjpyMwiXDMcwQ6C4nOOQ4KU4gpT0eW56LwuUh8IRqHxeCrMeWNOGJ1OZGAwzfiiZ1EcgmKikVT6zD0OgyVgCN3EqmdeDoBN95HpJPwGyQ8pw9PHabSaWQ6jTo+Q6fP0jcGyRszZM4wmTNB5cxQd3/QFxYWNrY3dnd3Af/yL/8Pl4SYTsfFFeFg4wgwmJ/0BwB4ssyNDZ2ip4fy3UIvUIT6arLbUtAQ9gv+vv4rrloG8cElTaFStwjvUgCsvvcXG9OIDcYOmBrEbwsmvzlFWDbrEM0FSWV8zh6LPKhpP8Pf6U9wT5hnIEs2Ol7x+2vy/XHO4G7R2k+BcpvBV5kn37++52H6smyh7WRVgFdwVgv4wMXQeUr9PwHD8ZT3Yy4yJ1+MwPGRmer2YJOuHxmSx6MZBe9vACQn6T6wThTkAOtxWWIL2g/PKxlYFnO8vg2KA+/dRb5ll1NslTtLdWoelaHeJDQbReWN76Vsi3HGb4z9KjJ1JaSw+4atc6Wc8g2+FkAVwnIjbr1YTP79c7mjkrZ1BWPcOnp7y2A2rk7hDarMSJ1rXXQ91IVU1fQS9lfAkcBVjZ/++8ndT3hSxw83wojI065HVgmeGTJJ+qxq4RbzRoFEWNFOp8dZN16x28WiLfYXm/R3spprNI9IhbKWT5S/CgQ6uZBuhmnWb6F2nweFBBNVcFYK4dEikWKgRlnd6pXNDZf9kOIxeE5fs5rTHjf+Ms3uYKFft1tj0bZGvC2vpGethbmKTXWki0ufE5twVwlZwRFyO/wf5YB4Zu2qyiJ9n7K3KwKqmmicUykf9m8HBqA18dmEGxUiIWUrwluAxcLl9wb5ckU6B4Njan+7hReHDelWBkzfdqvCN/HmpSdLnh5IpuROL1nPPJZm7O+WllS6oitGv03HSPReytTMtAXXxvo5g257gy72+AgFcPfQG6gB9cTnDXVztAOf8yIFJ6QivDJwMvoGQ0YPcyD2qD6xXaHs/uT61hjkOkNPkwCdNkHclLeIjJ3OUGJH/WoxR7pdBvoTubMs/PjWFrX4TXdf7azeYcWIfN+uVLVGeNh4gppqy1oo7KTPhZ4ZRh+G27iNR9qrW7lsgoX9Uigt1cYk4UwN5EBlk8JoW3CwfPbkllcFLUMj8hTVPKx0jW9epK0pqUfrrpPUzacF9/T5F9luwWkTZB7rT2PXTzW84O9PKCbNWAv0NrqpW3Mp//KoiAG7C2bll5VRfv5gdPympc+VwSAGlS653npnsXfODdY2DYJKPvZP9RvBoMZXD1wLFfX6a4Jcit/VYjGhrwHSSrhsIb61xoQSHarPTtuzgifFyDtbID4I5XOe1592ygKB8fSMloelowQ+PeD0E+u1m2UfYqCRS3PnChitb9EjZsse0DeOOwaxedAl9yvaE8wIo7VOLIR9GIcdEq4bUOfdjGtICqpJ/WvvqWeUx2cDiYQImPynesWzPTuwx/K2Bi5uky7DO6rOVxid5fcttBbpDfEduNO1r+hcK/v8tob1gWDt5Os82brbn1XM1vPsZOfwb+0SmTR7aWjXH5Pmznmd1PsJGpqb110tRfU0RZ7RJ2o71DQ2se26Xo9QzNEfzZzP92PxPUfKISEPInby5c9peq4qnqo/0vPVG/nKPNEelXxXQjcbdzlHqqnahCI19UM+X9Gsb6RVrEvhRjK4nthdSWrw/+GCkTio5i09AtU+ssChTSq1taa+A2ZwDnx5MnZi6PHU+jFwjI92+aHC3M/TPlG1ou773M6VBQRV66LO9q8mnzxTKWtk8+vPoedfBLWQ3edzrW3/kFN9kNhr6q+UGa5aXvfwAe1UhWSphBiqWz0ilj9zABIcAOpj5ISWLbPzJz/hdxGTeODZA/QtIG5uZN/ScqkjegKepjYOrkHIp9nZ+8QKYeTsK9xm/Nb2ZGa1dwaU1pufEZwH1fHEPe3VRf3SPaxceuchrDb2vXQoTIUudMTs2bS3CpooX/7QbD9647GVpql4+QXBF7kyqjZy44aBbx1XFRlzS23UujWmW3THiRKVpwsWEmcnQs2QF39BUZvPU2zF2zS4UtxW2zyz8+A3dJZe05O+DCDCm6sUwUYhvj1QC5YgU9W+dc/B2y/u8B8U/QmkGr6aVNuNncq1cKwsip60SZBAn2D6vXFiI16y7Dj3UCQBSOGjq7or+7rqXXvx1kMxZN5yKAK+fVfoo+/e/VVLWkBK199S53eO2lnAgZmVLRHl5dzpMfnoIQCzqNayOZf3Z2g7E7B0S5PESpf0khwlEJSKGa7oCwiDORVRn/rf4yrowAOI3WNlFmmnMudLNfsUb/unTryHkr/yL9lv0pPfXmN37640xchrp7WzxmCW+CDTSR8SX6ecqCmKBNRgxZMnffIlJbofiTu2rJ/BQtQCmYthM3wHYStoOD4kwhlPM/yb7CBa9tbJ+XxWdW8waFVrak/kTY/8jFmmmgr3AFBHrdWbG4HrXsL6iPfLWtBw5uTzenj1O4E0nyoIKUfi2jvx+QSldeGKU2NOB9fWWa+kYwhZ40BhjwlBmswFv964tmJP/oTR/sQBoUTptMTamRv76RuV9Q86Lva4fl0auCXqk4rrEcRqgdts4H2QWgKwaehAZ0DSSljVjV9FFNcztivf8fg0jwg+WnuKsVJG49Fx499USKuxF1TxYqZO38m4ovM7LHQg+pIkJTCc4PUgK3U2DQTlPROieEBe/fRFbX/SduP8fL3L/nuXjUzgSJ2zuVw67loRqYUTa/N6seayvhkqCrws3xdeQe61pjMzS/Tx7Yww9kpwPMxwLN9BtLkqnbEQWVZhW22qUzixzzvBG+ENAl1zt69KKv1zAygp0a5whQ1na8Dx6QVf3L9jY/w8Px5qMRhnGpbUTifSwPld1GruZuuHsx+OVFZvwqYV+iFXFzqy/fRrgmV46wcq77CGOga7Kx4EbBdaR2Gmvs+tBQllv9bsPUProsQt0vX1cHkgv18tLOo930tnP/5jA2l+dUIiykb54wZms/ahu7JuHIx1wXOWHsanT2S38Kfmmp+zyVL6yLFyDLyV9FIooikaPbKeD6B2osuBAlkxEWzfinbHBBZl3fjbRd9phX+ih61Yz54dClY1wGQ9we6r/3tXzE1sjOug9xP/C1BLBwhg3Rzv4AkAAOALAABQSwMEFAAICAgAo4B5PwAAAAAAAAAAAAAAACkAAAA4NjhjNWUxMWM0ZGNjNzkyYTE4YmU3NmQ1ZThmMTUwYVxsb2dvLmdpZiWUezzT+x/Hvy7TcmtpZVFKym2WNMevhWLut8UMNXeOS2eicreT6xAtSSuXJtfJbS5poZ1x/GKSrFxaUobEji7GUX3r4Hx/8/g9P6/36/N+vN//fj6vPHeCg4qihiIAACpOjrZE6Y2WliFcTur7Z4g+ACAHuLuS7Hg8HgyOUNMy0D6oZ6F5CH7I7YDhKSOMqYmJJQaHx1mc1rEgHrUm4fDOOAcSHk+wdyXKYii7zKNV7dMUThdibChY4gUdQpalS+o+7yKd8JJfAjOxYQx7MsUhONEuuNAqtoSiivztkFmJKvK6zgmiKZno4x+L8yzGepIJiT7+YeTQCO+w+Fx02DWbmNAISuKFi2TsVT/SdWJcTmgM7aJZzpXg7FgqjUpN88kopVxhpNJy0q4W0ugM+haMQgZDzr5JntCrHNSxPWRY1kcECxbBIj+oxM8BEetwCginQPBYEEFdg8dCKkkQggYdPttkQHmwL7ETQ+3SihHoZwv2pC8ezp13JnTbUVusae22eQMUPDMkvCosn03Nr0fRwX0MEF30l0nlmnWpwKZq3rJ2zZm9hqJDKAakzYCOlEAGTMiECZndh/Bs6GxZe8LtthxGRc6dRgaDWcJkFjLZpTUtxIphYt1CcP1g5v1+cvci6QEUOLBOG55hAwAHjuABwJg8XARIhRADgBiAs1F4HspAiNAe2G0qhiNECJQQYfAesU8CABIALoEjJAipUBKUNggAIAAH4XAQgQARKBCFggAAgsMhBAJCodjaJn+ij/INDF6i0e0Ycrut67CZxaStrVhbW2JgAGlrr5uYgDgchMOJ8XgIj2cRA1rP+HCDzrPS0qa8vcVE0nBY2GhsnIRIBInEdTIZCg1dolLXKRQoNhai0Vh0OquQwWKxOMwKFovNZknPFiw2h835PzyO9J1tuUBAp4vodAGHI2lo4EuHPD6Pz+fzBCCdvnHzJshkQkwmyGJBbDbE4UC8raWQz4f4fA5fwBdsIRQIQIEAkjZCISgUQkIhTygSCkUCoVgo2gISiYQisUgkFktdvIVELAbFYkjaSCSgRAJJHQQhqSDIszKlRvolZOKIBE/AanEyHABgOk621qSkqXISJQrphTyVGLAezuVGDydMLde4ufjejNgp3/zjKu3HwdEDuroWyDHbTbme3fJp6Vawfv1MPOlgUf4hBXS1u2ODSuYeX0UMcWrMZzKa68I1N+d2YGN52Lf4axt/h9+iiu/F9K6Xr5VTd74zybwQM4IHfrS2Hh9JpL388QL7whML6NfiNzNVP75ejUx5frLab4lya8NIhaFy+/Kd//p4e8f0mJv5JR/s9VhxgJzgm24Xa2R+TqfRVGO6lRLc/607OYFxy1SVONzQ0nhK5NqMChYLkipXT08KtrkmhwQGCxY0m8X9qwl9+oMTAa2BS3FuXFjd2HjFmqIOR51eUIkdJ6Uv/J4ww5ppvM723a+0WYcT89e8i481eyYkjGDKi4zPbrrlqfskP+8SCOfNyH/oaQ4GZX2zqC/hjoY/G7Gij7Sk4CMKRpB3fKlRg62uLDW/FyiRNUsbZWB8p9+vjHVw+31dI8PI6fg2Fg7b4JqbtCiw7Gzb5dVdEzXFFXmLFJVhzRZNNPuHnWFPnLLmTeRsn1Q9Hn0X4FKvPnoOLLjggRV+V5s6wKip1/06cKQ98La1Suve1R9j27LyTlopl4Va36vNU2DI6+VLPNKHe96T37xBWd/Q21HbPpwy0ds+R03haBbqZTwnqQ2kBkkGrNBfX3o1Be1kRgbDzu9SmI0b6q63zN3BCWv8kJSe2mAd9tPQyvSqud3ykHUcg6j6KeXFIIKC+mfSS6Fasb3ixrdxXo/hvfi1NwVGMx3H7Ew11TH81/Gf89ePrakNjIk9bjULj2Le31rwSla+WLn5Z/guEzNZx+myHGRYG2F4qbv02dWgSlUFLa26MmIrvsB5Zxr+oQ5d5hrq1KvL6NLfzZrw6DzOmODX9IbncLX/TB1VK560vGsn+xH9xt7U/WNm1cNk3yxxmob7q69zS30Zl8JwasAT8WP1uTLnKxXt5tkPMk4O6x/BOx7qwPmhNXTca5M/P/rKTHFXejZa1mesfnv70h4nu2suC4myyG1Rq4l73J9RnKJLyi9d70dqCBPe5758/JlR63H/ezShv+H6hpJWWwd8+EGdtffeI7DZoi5Q7+3iAZOsyr/6v9+vWOkKT/6uFoFGZuvralxWidzfTpn2I6c2fvxYJL+7Qp/yx5B2dkWIwRVfAqCq+yUlmkv2NBrqQ8JgNsZN6YpFBLqJ6qvxo+Y/Qy72LL+NSvMsMpJXdiVF+Zw40Xb+Ybjzxr3xAbrMpPfdxlBz8fPAVpheEWpWP12/7uYDI/+NZlaG3tDhiZGTws7J/siGKEZwoaau86PeYn7j2SHsGUXApZ/qsDyw0SN/03QIKdeBV0s40fUwAJFb8I6+11Fm5W9xXMdTTPSOb0XZNz4vtKRmVenSk4x2QJEp40KLwpCuIazD8mIu5cmlwgJOcWn9THHZ+YVvyWXxRLfYmeUv/o/OEF58KFz/tDNgZbP6lyEsLPj83tJp1fLXbeFKGA6SNPfJH7j3NobxiP5F/YigXMWZcNufyjj3qXO9azI1YLfj/OXOdnt/kRp7cfbps+O/fbO3kHDdGTPc6rtylFkz7/mqQp3qmF/r1tVtVv6dWHa7QcMCx8fig+3bpTnw6kx+34IqT8+4uVcBPeGVUJQWpOz9+ve6nmuOtwwv7Db+RPhqjB30ULgku/ozMQgzq1kQ6o4oZoGHB8/1NTowPQd7X5UVfAaW7MCWaou7qdn2Mt3j08dyihMyFlPm8lCuK1ohZZ7pHv/AOMdOnd6oWDXeJlEC1TRm86XZCTjZEWxb8EGZ/wNQSwcIqAfJRXEIAAB1CAAAUEsDBBQACAgIAKOAeT8AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAKOAeT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3ZkqPMlb7+/RSELiY8dktNroCnyo5aet+7qqsn2nZ0IAmp6JJADaiWDr+An8Jz67t5hvGb+EkmkySRWIRAK6j/+hcEJJDnO+fkWXI7+tP9eKTcWp5vu85xC3TUlmI5PbdvO8Pj1jQYtPXWn/74m6Oh5Q6trmcqA9cbm8FxC/OSdv+4peMe7WnWoK1Ci7Yxht12t9frtS1d63ex1u0ZA62lKPe+/QfHfWuOLX9i9qyL3rU1Nl+7PTMIP3wdBJM/PH58d3fXkZ/quN7w8XDY7dz7/ZbCqun4x63oxx/Y6xIP3aGwOFRV8Pi/37wWr2/bjh+YTs9qKZyEqf3H3/xydGc7ffdOubP7wfVxC+mscteWPbxmNCGNtJTHvNCEATKxeoF9a/ns0bnTkOZgPGmFxUyH3/9F/FJGMTktpW/f2n3LO26pHQKoZhCdEoqQqmGjpbiebTlBVBZE33ws33Z0a1t34rX8V/hF3FIC1x11Tf5G5W9/U6AKVeURPwBxgOxAqbilimsqEgcoDlgciCiDxeNYFMWiDBZlMGopt7Zvd0fWcWtgjnyGoO0MPMa9+NwPHkZWWJ/owox68IjR5Ns/WGH2vZYiIGcVf6Q+wmr4n6B5jkAw98XAm1b8oPwc0oxyn4NrEYgWkgcXkUcLPijoLUMfIHPfI+qj8N/wv8wXURGJ6S+K8/U+SPFOSDx6LNXjKNIIxb/mZSOpCayxz3UEGQoxuKgDhTB9oBqTbKIAgx00qDANUABRMGGnQFcoP2oK0tgNrCBFV3g5gJRQIYjO/oe18GVUIexl/KrG9FAB7ENYIUgBoR5hhWmPEuoi00uIWAlCFMIe4p8HkL8CUQVTdoZ0BbM6cjXUACuI2IPsnH0eKggoiD8MNAVShfL3AczVm+q86uyVUKGqQgF/IdNkpsVCg1l5XUGcGhrBZTuTaZCAqDfuy5+BO4l5wUqzNmjW0ok2KdEQ/nI0MrvWiNmGC85JRbk1R1wbwg8NXCdQJBOpuDb0zMm13fMvrCBgT/nKN/PWfG0G1v1TVtqX3w7L9lzHf++5wZk7mo4dX1F67kiN6+yOwNxvGNeanaC5G3j+Bpm7Qed+a7nfddkdZepb7Puu58viZr//gpeYNQsMyXfO6OHUs8ybiWsnyTh6HJqZI2vaG9l923SumLDyr3BclNjq8GZKWh2IgKyI6/UvHnwmwcr9F8tz2T2gdiBAiGCDqoSwHy3lQdxi7+gQqCGoGoCZF8Du+D2T6x4kHUo0QyUGAAQRRJkoPCy4h4n4tnUbs8i8t2bUDj2u2nMnL/xTdzS7FAJwZk6CqRd6DKxl9DhZJ85wZIVCEqo2M8e9m657fyGkA4l3XT5M2JkqatAdhsArHq8kI2YYHbviGJbhVYtLqWEZNSyhSnGz+/F9YMCwRHjsimNYismvqFpEKpBkAlV+xvbDJk1tRYojmysu/dy6Tx07eC1PArt3MyOVP/B2Ou5aMxniBc5t4YoIHyv5GbDFzxw9Toni0Y3lOdYoknzG8qk79YUizylF3+rZY3YqbkTAmZypn1idxNW+NfSsqLw5Cn02AWt4V50X6szl8FVPPXf8wrm9ZBKTqQAjw2NSxCrB7YO4HZIZ0iRpOPJ7nj3hcqt0mS25sWaS2bd9k5mi/rxyckVmL+mFrwzsgGPJVL9rdu2RHTwwbZ8G1y6TnXPTsa2R8oZ5aZ7pMfezz9osxgSu2SNrzC4rQSi8znRseXYv5pkZ+oWsttOI3nbMbs4xxe1+Y61pmtOSsF+O2P0FAq6Yo8m1yf3JqLkYmQ+WlwA1fNsbtx99Oirnj7gjqoxtZmXbTKHG5j0zrOx9XZ+1tAFzxRkXnZkrLoQpaqmAqnJHnz1BCeK/Hpg0UP5jYN/Poc1Qs38wcTIT1Mw0LWBW4Ia5t37oegWR4oc/ntv9vuXE1TVjnrOGcCLoVZgN4h+7Ytbd55+LXzBhKIQNz0w2IgYtZVU3zSq1Qw+CUxrSIk5Rdc+cUn6v4M1wq5fmFu7Ag+AWNaReAXXHigVjdhHlMXN/f6dsnG39THsIO+Qg+KaphuQbBvtSM8j4hlbk2/3EY8/w90aon7QUdvG49VvzkdL7T/me0MMT0UGS1dGN+OElPJ2z7fNMhSpewFa1JFvnHQ2fcyY0uZwxvIlQfsx5XGGVuQ8qnjTmr6ZclGKoTiVUvUdKvypUp8ugyhd/KoDih644rA9ViNBDpJVFUKGVoTqTUHUfKW2zKlZnq2G1Bani3kGo7Vy4tiJU53NIVda/8x0L1bvBwLcCDgwQykYq4rhMOUtLXAEoT1ZslOYtTRiErio+RW03yGupE3mJuEGjUYMmfmwZtKeHAdrGMeu547Hp9BUnTGi+d0cPQ9dpzVJspsoFTjEBh1AxIU/aC5Cmgbw/YU8BUcb6CkSpQfgDHbeu2QEft2x2IMetZ+xAj1vPRTWij+ewTlRD8kZ8YKGrwTMvRb5GgutRUrg004EKV2X6Ytn0rSE/i+vBYdtnTZNNWeQAwkjENBi/bBX0re+OeMYXaR57PBnZPTuIxWjE5f2FE1ieb4VJjGzi5sayJjyv9s659EzH59116eRJWagHNYK6DUDHSPwJK6J3dB1oOgaGpqoAEvikzbtaDo4X1/XhBOxQigkikBgsGkIa0RjmRLS1M01IsUs7HFbYtWGFQDvEvaNpFBGqIwOrKiQqETzJ4YTRXE4k/ZRnK/opm4ujzOm9PbJN7yFJQMoLSfwB4SunWKJt3al73gSw2mlcdJHF3IrTm85UydxyKl8FYkIXa3x+aEVACB0/ZDzi4pTVLLYyhHrjsvksEKWzgBpnrHCUr2LtNgRA1xFi7TYHV4hiW+voBtEBVqkOhYCunMgCarVMVlm3frEXfmZ7vZGVcsLPhIMNMt73zVdQ7E33XGdOIm6q+D/s0b4taOMdxFHpfl/599//RwFZ6ZB9nOkMBaiqV6ukFC17aDm3rIau5yvKvRplNR7UyKf9Ia/cMxzbws0FMvUB5irJ2OnZ98qJLH8iS51A/irEXLETFL30BIfv4pfIfL9Y2qjw8Qb2gPGhOudPFnF+UoXvkw1xHWe5riaaBBUfItuB1uF2IsF3cZOzPe62Kcv24lb75mC7hYh07iBCNexvzW2ci3k1SvMKdfBh8IpKXiEV7otX5U1oNvP8Smaebx4po6qZ51f1687ggrWd3ozXcx0/N1WRel0/pDaWhc8g9WYOqW5VpN7UD6nQc9kKUm/n+n0qy9Tb+iC18Z6dbA913EXdX6WLemkf9e6wEh2uGwSrjHe80D0OqrjHwYbcY7Q4KAIEHW5YBCGLuFP+cSgNK/rHGS15MdeeVB6c8GI1HdlY51+2OdnY2IQSKvJikYb0qqUOeut1nYSRYVcEioenAKRDwcK8QDw8bINpgTeLuNqvxtX+xhJCMKftSwxZOdzcgJpmfWgBw7YvHoC7etv3UrZ9beYhtCu7CC/r4yFIB6G9Qw/h5SJFGVZTlOHGFIVmwQ47z4bRMdWZdkCqkucmtGM/Yc00mj02hzNmhGeCYwObvUpISK+LKBiQHhroAJp8upClEYvqKup3CbD6fxmbttMZ2gNREds5NXs3Q8+dMhnLnc3xnkuo4oSTVkJsxVhNzdAg0iilYZcPibp8qG6oFBhq2FVhpML5tTpfi51KUCQtG8q/FGbJnHSWDIYDjVejO3SkN50pU+NOJj4ns1SuDMW5MixHuxvrZcpW72t6Mfjz3Vf4SGE1Auz/f119wPQ5jKzNf3yfusF/BS6ruPjZyhqawLqfG60JNzDITl3VzJQXxnOUnSQDaOpvaQ63Ii0VRXOd4YILOqUrAISXAaT91PCQX+Epgof+Ck8RPNqv8BTBo//s8GTn5SQtsvBNrHI2+bQ+Njk7iSZJl2eNTL4kQznCzmpDWDIEvbC+Ty2+Ok8yCP3ISrjjPzPfjP5VxKO2GCgfDZMP3c50gDqymYQtiVF5mVlntHggn2QAFov+CgHjRgL2p7bnBymoIiJCkJwMJpe2x6O88phEDzQHkzMWbAYvBilU7pV///0fSgTLDIQENqeoGJd0W3uacYRxrAcVGs4SjVp5CmExhbgihRlPNpxGvlcKUTGFpCKFGWcU4X1TiIsppBUpzPiTCOybQlJMoVaRwoxLGI6O2iuFtJhCvSKFGa9uW1Ka42agyM04RcpjxcnLl6ere5aXITAA0jVCDF3VKYB44UDIDdcey9rj0rXPC981TUUIG1CH0KCU5PTVbKX2RNaelK59bnQNqWZgSHTE14YiOQn0rdSeytrT0rXPC36xjiBBRNf5oomY7kpyNFl7rXTt82JToukG1hDVMQQqgWRHtddl7fXStc8NHfciOSfJ0KbrTkeWXy6wOalNYJNDFkiQdcbJmnol6crpPasLXadJup56//qniOJKBtk1Ju3ESJB2WT6dz56sLVWnkqpSDcOpUdD9tOGmoLiFYuFmponK6wY76HzWCUqI5Ed3OiypaCeoviJ5ghNUXdnuyAqCsoThGhNGEoS9NKdOWapIjamiCapOmSErSRStMVFaUgYtr7QAajWmSk9Q9da1vbJU6XWhKhl4PxHXKyU++/1qIXc/s0odrGzyyk7Efrfn8bXhgIukCUqMS2cv1FkggFWCwqE3WBcjcrSOTjBi0Q3UNH4d7WpM2rtFY9KWZLaTI9KsjYxH+8dPOpOXqh1q8GniKqQGpTpIz+/MlZpwTGdWbkS9Nze6d6GADKoIyGBDAvKzjuxtpogMq4jIcEMi8rNOfGmmiHyvIiLfNyQiP+nSAc2UEK+KhHgbkpCFueXDnjvUTAnxq0iIvyEJ+XmnTuxPSHI6Z9bLl59tP19eMONhyfD3JGlyI43gX/8sOQi+NrSll3a1MwmH64xOvy/W6WTU/361qB/AyC2EpFTkv6XJK6nF1ZEGMdAQEsuIISN3STtjK2vulmHMhyqM+XAwjAEdCnWqUt6a8ZUGMc3li74FvlxEK2QmOfNeWMMPGQZ9K2ZQer3Nb6vNpM7bRGplFs1gXrDgbLjoDLugQoyYZoRIi1nrbaCzGxRgqqrhDb3Ba6EmlefjDlYKL2TLkmSm3KBjJ8umX9QcDLhxNMo0Ah9FI3CRaQTG1RqB8fqL7q7sKeQt+Q1VCSKcvS1PoWmD9Ply+30TOzCE8bY86u7l/DIj5+aymfNpSTfz5s7vzi1O+npyE4UYSowLpR3XTNqX+4/jDMc+VfEfP9XAf1zS8AN1uw1/OVSvqqB61QBUYR1Q/VwF1c8NQBXVAdUvVVD90gBUSR1QPVlmCVOr9S23gzVAduu7DJVB9rQasqeNQFavA7Jn1ZA9awSyWw4EyyF7Xg3Z8yYgC0EdkH1SDdknjUC2Ft7W02rIPm0EsnjjSbLsgqRfZU/RlfJ75bfqI4Woyu+UM1R5cdJVEa20QF/J6DiOAFCHUAPx/kIVI5XCba1+/CyG8dN6MD6rFYzqjmF8GcP4OQEjrrxYZK1glJET7Mi5kyCcTUm3tbHvqxjHL+vh+KpWOJJd4/g6xpGFPAkkSeUNBmqFJI2RBAgZGoAG0ClV4Wa6hnN2HIiBPF0XyDe1AlLfMZBvYyDPUkDSytsT1ArIuGuggxOzncG2dPtdjOT5uki+qxOScaSzJSTL7LX8SXS5XInFoV7IXZSffc3Z/ou9IFotZyqK34rCdvgU5isWw2WufXajZTH9PLcjZNP7LFeZZFJ2QFdhN9R0v51QS6KWuBs27oVtVLdUMfS3NenrbhtZj3y+LxDgTnK1joPhgL2Jna83Ot6gHW+s3EmurVO0BFuzQOdNcD1AL5b7tkE6iduoQSwoY1g/C0sZxsncVr6SpvVLrmGNFmm7E4W/ycI3X6EwrT+qG1a0Q8NaaXLeRkzrXU3EvK2nQ9xU+85CYW1uNSzSIDlfMqS0du27bN7bpJNYfQwXbdfeLNBvatO+F8t9GyDY0TQCgEGBBuEBseBHI5z62NdpN8ytL2NcT75Gy1acSvP6RlrM1wsi12iNUDM0qOyBrnxgLKPX0fKOqayRxbuPXstNb96IkTXzWpsaCvtBRrDd2thX5uNkcqaJ8ay0ExkBEcc2yZdfMmK+NjzItOu4k1xpUj8Y0Ee1Ab1Y7pmPwxdbRQSrlBo6oY1K3pSxs2+lnX0n7ey5NJtnC+xstFK1Ix9w5QN9Gcr2VskSk93ZWbXKGhEbMbNObQQ+E0nBZHaSGLhBIl6Mulsb1LWc/p9EO0NYQJsocjBM6DfEw2xsOFUMf6826YT2EiUAWO0Y6tw/DeLBKsMk31cbJvm+EcMkazGF4kM1ZD80Allt+wNQP8bDMJ6khmFoVYdhfKzVMAw5BBV0EhsPULiZZR6ySF7ESD5dF8mLWiGJt4tkmZDliQxZnsoI5EJGIB8XhCzR1jOWTA0Owh/sAV+mBr1VUoN01yFLyUXLNhKyWA3x2w4yMziok9eW1HSUdNp0o5O8eygs8GsTPGYiFNRJbqCjHU7I7tUG9WK5bwMNdWb3+JZGTeJBxmG5jB2W9ymHRa/qsFzWymGZzVPYzaDwTzGQH9YF8lOtgNS2CmQZx++9dPw+SMfvk3T8Lhc4fpp4YCIf+C4fmErHL1jF8dN25/hVXYt0I77fZN+L6/zMvt/32pjAJb3CEBgdMfRH11WkQ61JnWNLhvXXhgdLe4UPZ2RzUBvQl/QKQxV15nY+VbUmRT3LE6pmjjF9Xi2l+nzPrCy74iVekkuFK7ov5UC9qgbqVUNAhXsF9XM1UD83A9RlizRuF9Mv1TD90gxM9yunJ8sHySTX+dpvRrAkpvttUE+rYXraDEyXdfhtF9OzapieNQNTfUOYZhNAfO8Ga9FuFiV37I7eUTscza7vjqaBddHzLMt57fbEMsQcWKxq0XLCtCRGyQ3NWQVxBXBqKGQDl9XXtzx7EOdKfCZP4Yci5x6UgBGIdlQsf18CRpSGUa8AY87ux4cFIyoLI07BCGAFGHP2Wj4QGEWvB9JRSRhJGkZaAcaczZ0PBEYxNRqhsjDSFIxQrQBjznbSBwEjMoSJgTooCaOWhrGKicnZv/qwYERlYdTTMFYxMTkbZh8IjLpweLSMw5N0tK/CfdzKboRwuyzUFtvCzVZBqU3SVGaqgYxXinf8IMV50fC9icxoz/QCy7fNaCNzP2DnYRAjhPPjcmE+/wrzO7nPK/fNni8fHbWXTm40/7et5bqexDiu3cf9pFY4brePOwvk00VAVhfIpzUFcicC+SzGMTXc9rzycNtntcIR7xbH5zGOT9bF8XmtcITbxLHS2JVzOQb5qRyD/GHB2BVdjl2JHuh/ReKBQfgD85ECK8yz1Lc7diV/r103y+dwkYPZNMyEC0IyjFYXM7rKsJYKaaONELKqwLb1jKDOD7xQk7cLx3/We6fE7GzBCimpvbIoM5EWd+jcX9EEzmaxZNAYlhQqTRtyN3nuDxct1NUsFn1vTMNWebZt3RhRxtiHbhS33c9mxj4ad/pkgbE3xAPX8oHhzNhjYeytr6i6sTd+XmN/3TidOHhLMjwUS6KqSUtyMBzirU0zONR4Q7Js9mVTVKU4VAE6SoYqTeJQzg5NMH+fgvPK+xS8qFV+BOw2z/QyxvFsXRxf1glHYOwWx1cxjqfr4viqVjjqu8XxdYzjybo4vq4VjnS3OL6JcfyyHopvaoXijrvX3sYofl4Pxbe1QhHtFsV3MYpX66H4rlYobrUnI4vi+xjFT+uh+L5WKKrbRLFMiuilTBG9kBmfpetuAlU88U0+YcsepL7MEfVWyRGx9/60SaJvvyaJ6hb52o1hSXGSCGjJ7gZ0OFmi/q9ZonowoncoWSKSvE2LVhKoG4vKmPvX0ty/ksb7VJr7k0XmPhowMpJP3Mguoa5cZ9tcydyDn9fcjxpjW34ac3/TmCZsibknyT4hWLQeWLNY1G2c1hyouTcboytLzD1KdgodmrV/K639G2m7vwjL/Tnf0kO5o0ZUeiwD+x9ylbK7VVYpA1veeLnOlt5pXJt18JZ+3BiWLLH0qXGEsEnNVzGLflSZTFYLrTlQS3/XGEYssfSpkeqkSUmwcvM6IuP9ThrvK2G6P+WbeiQndaBWtHlWZOpvZVA/XWVSB9jyVtB1NvWTxnjFP42pdw/F1KcGesKD4dBtYzh04JZ+2hhGFFv61DjP5s6t6bruyDJn5tUN2cMenlqZzyxmWv5YhtXWXHg3GPhWwFlAdbGQDCCFLDMnoYyE1+bWHmM8+Nc/Xc9mp34Gg/yVP4zEyh+XtmcOLcX5v/8V58rvFSdv5Ed2ERBjr2tUzC0VEQoy7AACDBUDzQAG+8NYoAo7SCMY6MgwNH59fjTIYoFJbya24jiXeVrX2kjMdOyxWKbED6wJfwFrBPyJZfX5gzPVm7AXMkVKNTDxEBk5JLi9bKm81YbFnNleb2SlvOkP0pvOdoldL8uAsbbR7s3N/llxWRS5B3ta6Cqutb+g6YNLmj57aDligRefiaoqPqs8qLKdlVfuGUZtYRlBdOkHmKskEwDPvldOZPkTWeoE8tG14bICJyh66wnmRlXcJmJpxNyGmMlQzx4wkCuow8dDUQe8B3X4uFgdvGVRYlIdvFVX5Qx3HJsxYvW9kuusEJAYOQqBt6IQF4eiEFqHmU9EDUygHo5vEuqhdQxqAF0HEEN+me5KWS4WK4tfTVn8lZUlsh2h932o1gMRrUORzhgPCKa6DrWM5uSIBtejrGhsTKsuD0SroLoHM3O5WHOCapoTrLf4cxStHqiVwRRlrYxg+MatzKdD0QfUARhijDRN1/dsYD4VBSdLBuKlg5O11l0O+bLWLrB1VhNiME3QVUoRBkhXDZhRmaRMbNmyXB2KJtE9WJarxSrzvZrKfF9VZTa4f16dtUZDOSGM4PkGjEs6J3oXKcVcVnSmBDtPikbJu9Ip0SiNaU4DlyvW92UZYaZ+wxkR4Zkgf2AzIIX461TvEQuAHu73epoBTaB3LY32iaUPAFHNv4zcodsZ2gNRH9s5NXs3Q8+dOmU3WeCbVyCxEVm459sed2dcvUWaB5lpvuMzssMUPj8fWu7Q6nrmH/8fUEsHCJpHzk52GgAAbjMBAFBLAQIUABQACAgIAKOAeT9g3Rzv4AkAAOALAAApAAAAAAAAAAAAAAAAAAAAAABjYjM2MWY1YzNmODEyYTExNTNlNzVlNjgwM2RiNTFlZFxtYWluLmdpZlBLAQIUABQACAgIAKOAeT+oB8lFcQgAAHUIAAApAAAAAAAAAAAAAAAAADcKAAA4NjhjNWUxMWM0ZGNjNzkyYTE4YmU3NmQ1ZThmMTUwYVxsb2dvLmdpZlBLAQIUABQACAgIAKOAeT/WN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAP8SAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAo4B5P5pHzk52GgAAbjMBAAwAAAAAAAAAAAAAAAAAXBMAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEACwBAAAMLgAAAAA=" framePossible = "true" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Sidorna 261-266
ons
Här är det lämpligt med några laborationer. Kanske olika uppgifter som gruperna får redovisa på nätet.
5.5 Statistik i samhälle och vetenskap
Sidorna 267-275
fre
Här kan man tänka sig att eleverna gör egna undersökningar och redovisar...
Medelvärde och standardavvikelse
<ggb_applet width="1043" height="624" version="3.2" ggbBase64="UEsDBBQACAgIAPVzdT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VvNkto4ED4nT6HyYU8JY8k2P7uQVIDUJlXJZqvI5rA3YQvQYmzWlgkklbdJXmFfYF5sW5INxpphTHYOszEHGyy12vq+brUbtek/365CtGFJyuNoYOGWbSEW+XHAo/nAysTsadd6/uxxf87iOZsmFM3iZEXFwHJaxJLtGX/2+FE/XcQfEQ2VyAfOPg4skWTMQuk6YTRIF4yJcjPNtjzkNNm9m/7FfJEOrBkNU9mhVbyO1pkohP1V8IanxeWVut065GLMNzxgCQpjf2B53bYlv31gieA+DQeWa9uqhQws0naOOqHJkb2LOOGf4khI8YPykE5ZCPAnYhcyhDay19FdMxBGKOWfGFBFZFv/SjHQZ5kf8oDTSMJUUwQhhD7yQCxgOIbZLRifLwCGh7tamx/HSTDZpYKt0PZPlsQg6EgD7PKLnievUpgx3I/gltvFbWK7todtTDoeCOZ9HmmRnuN2MHHcttvpEH0DtpkwIQBKiuiWpQWh84QHe8blxet0GIeHpnXMIzGia5ElygucvEkRMrBgSolE8iKahyxvw2CmBfOX03g70ew4WvX73VoNUfOZzkdxGCcoATQeTH+ef071p5KRE91L2UrGVhK5Dql03497REmoz6n+1DbkkZ5aDhwXqLFd3IanSDZIgsF5C26U8QeWhbKIizfFBXjN8oBUyv+WraawaMp+s1eJ70ll/6riVf3KcjL8zPXIDX5WGgXMZauoAJ6Pwm3vlCDeC3r2KTmylyv872Y556Cvp2EasPpLlkQs1IskAg/O4izVK1H7qFIfMJ+v4FJ35Pek0iv/AKZ1a8DmCSsMpIOL9gvVa5cXYqW5f1VMQs4hBaP4AmIkGE5Io71lAQs311+TgKHYX6BU0CigSUA3G75kOphlAiLMwHp1/W1JI/Tyzfjl5P3rXy0UUAEaZPhkIVsxiClCLZMoW7GE+3uXGcoQ+6gPc8rymbVbhQlkwI1V9Nyv23zUwSOh/5alBIF2vaDwrYWLoLeDUFomRWl7Gwf5nXFBL1CueICwtdYKIMozFuQPD5EveLQGlSp8lCy2j/taZ8nRNQ93M+JUGfGazoh7YaTCiFdlpNt0RtpVRpymM9KpMkKazkj3EkcqjPSqjLhNZwSy5wolvcZTgi9PmyolRtra+FCCjby18U9gbCSuncZTYmSuFy8xUtdLLDFy10teckleDUqM7LXxqRoxstcGhNftOmGpLO4UeF4QuAU0D6yf/s5i8UtpI/Nn3aJ0HHMp2FZYZQ33SppdkzS7DjpyhG5S3ZatjZE8YIzOsQXpVu6Do3V8/TWa1wboPBSAd6xaI3XGdiOXrVtdtpxGtY3t/j+MbfyYbkBqY5haVrtpbuzPQ/wEDQkcDhwuHB4cbTg6cHTh6MGBbXmSkliKYimLpTCW0liKYymP5QAsRxD7i4VMrwnh1tbxPBQ1+3KqWHB/GcF8Vb2vwG5a6Kj0ecpAGFdN9BSf516P+ro6LQuh5WL9oWatm5/iKvV+vFrB4wFFdKUqejRSaLl8+wBRu2BAzzwTRWvpiak15nrudO/yQCNfxd6ZPnw7ksm4Fg7j2XgeGnN4BRNp2Q5uE7fX9pwetm3n3gDq4FcL5BBC31mwhuT2itoZ8aXGyv9O9xsSfC4iI6x+h7t9B6Safjgk5FxAxg7jf/W1e/h9Mb5pUj/6w+skIyODEdxwRsaXfeAqI0a0bUDKd5oRYxe46ZtZY2MTuOnvQY2NPeCmF0/GxhZw0+uw48sOcJUR8/2FJuwlnc7RjIyk6c/fkZGRND1HGxkZSdOfvyMjI2n6L5uRkZE0nhEjI2n8foCRkTSeETMj+fETkuNNwiFNRguaiMpWofQMRHGeoSFKBtZnuPsT5MqTI09tecL7E8lPX3JmDhuML+Rf/PQs6m4x6iFVb73ZNke1jhIVt9kG26S2dd7NZikTaKvG7uBHzUnT1ajT3FFlPH434HdVUUbr628IXIJJt1iuk3jDRM2640N+UeAI6ez6nwQRG8GQDUvqVlUfLLrxTXash2r8cG02Okal1mg9UKOHAuqq/F9CeV38sfrZv1BLBwiqDnAABwYAAIo9AABQSwECFAAUAAgICAD1c3U/qg5wAAcGAACKPQAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAEEGAAAAAA==" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "true" showToolBar = "true" showToolBarHelp = "true" showAlgebraInput = "true" allowRescaling = "true" />
Fri att använda. Från GeoGebraInstitutet
Gapminder - övning
www.gapminder.org
samtidigt som vi kör muntliga nationella prov får elevernas uppgifter på gapminder att jobba med.
Film - undertexter
En tanke är att eleverna får en film var från Khan Academy och att de gör en översättning till svenska av den engelska undertexten.
Monty Hall
Lös det teoretiskt eller leta rätt på en lösning på nätet.
Praktiskt experiment för att testa om det stämmer.
Redovisa
http://sv.wikipedia.org/wiki/Monty_Hall-problemet
5.6 Vilseledande statistik
Sidorna 276-277
må
5.7 Några statistiska lägesmått
Sidorna 278-282
ti
Nationellt prov Ma1C - Onsdagen den 14 december
Behovet av repetition gör att vi kan senarelägga avsnitt 5.6 och 5.7
Muntligt Nationellt prov
Egna undersökningar och gruppövningar
- Sannolikheterna bakom "Kasta gris"
- GapMinder