Positionssystemet och olika talbaser: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 2: | Rad 2: | ||
=== Binära tal === | === Binära tal === | ||
Välj bas 10 eller 2 och dra i glidaren. Kontrollräkna för att se att du förstår.<br /> | |||
<html> | <html> |
Versionen från 10 augusti 2017 kl. 14.04
Aktivitet
Binära tal
Välj bas 10 eller 2 och dra i glidaren. Kontrollräkna för att se att du förstår.
A little tool to show an integer in all important bases quickly: Edit any of the four textfields and press enter - the three remaining Numbers will be converted.
https://www.geogebra.org/m/dDQCBAN3
Färgkoder
En övning på W3Schools.com: Färgkoder på hemsidor.
Teori
Decimala talsystemet (tiosystemet) är ett positionssystem som baseras på talet 10 och därmed använder 10 olika siffror (det normala antalet fingrar), 0–9. Sedan låter man siffrans position bestämma vilken 10-potens som siffran skall multipliceras med. På detta sätt blir talet
304 = 3·102 + 0·101 + 4·100.
Ett exempel från boken:
Visa att 0,375 = 3/8
Binära talsystemet
Det binära talsystemet är en representation för tal som har talbasen två. Det betyder att enbart två olika siffror används, ett och noll. Binära tal används praktiskt taget av alla datorer eftersom de använder digital elektronik och boolesk algebra (eller binär algebra som det också kallas). I Europa var Juan_Caramuel_y_Lobkowitz Caramuel först med att beskriva det binära talsystemet som han då kallade Dyadik. Medan Gottfried Leibniz gjorde det känt för en bredare publik. Talsystemet upptäcktes dock långt tidigare av den forntida matematikern Pingala.
Det binära talsystemets talföljd består bara av två siffror, 0 och 1. Nästa tal är det, av de talen som kan skrivas med ettor och nollor, som kommer näst i sifferraden. Så talen blir: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10 000 o.s.v
De gamla egyptierna använde det binära talsystemet för att skriva bråktal i decimalform. De använde dock inte ettor och nollor, utan de använde sig av en symbol kallad 'Horus öga'. Olika delar av symbolen motsvarade olika positioner på höger sida om kommatecknet. Om just den delen ritades ut motsvarade det en etta på den positionen, om den utelämnades motsvarade det en nolla.
Precis som i det decimala talsystemet är den högra siffran minst signifikant. Med enbart den siffran kan talet 0 och 1 beskrivas. För att beskriva talet 2 måste en ny siffra skrivas till vänster om den första, det vill säga '10', varpå talet 3 följer representerat som '11'. Detta fortgår på samma maner ju högre upp man behöver komma.
Exempel på hur man kan skriva för att konvertera ett binärt tal till decimaltal:
Om det binära talet är 10101101 så är det decimala talet
1·27 + 0·26 + 1·25 + 0·24 + 1·23 + 1·22 + 0·21 + 1·20 = 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1 = 173
Om ett binärkomma finns närvarande så representerar siffrorna till höger om det en mot höger ökande negativ tvåpotens. Exempel:
11,0012 = 1·21 + 1·20 + 0·2-1 + 0·2-2 + 1·2-3 = 2 + 1 + 0 + 0,125 = 3,12510
Vid representation av tal med decimaler är det dock idag mycket vanligare att använda IEEE:s flyttalsrepresentation
Horners metod
En intressant egenskap i det binära talsystemet är att en multiplikation med två erhålles genom att helt enkelt skifta alla siffror en plats åt vänster och sätta dit en nolla. Denna egenskap ger följande intressanta variant av Horners metod: För att enkelt beräkna det decimala värdet av ett binärt tal i huvudet behöver du bara läsa talet från vänster och multiplicera varje delsumma med två; om den binära siffran är en etta så addera dessutom en etta till summan. Man börjar med summan 0. Med samma exempelsträng som ovan (10101101) blir det så här:
0·2+1=1 , 1·2=2, 2·2+1=5, 5·2=10, 10·2+1=21, 21·2+1=43, 43·2=86, 86·2+1=173
Omvandla binärt till decimalt
Omvandla decimalt till binärt
Hexadecimala talsystemet