Derivatan av potensfunktioner: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 6: Rad 6:
Om <math> f(x) = \sqrt{x} </math> så är  <math> f'(x) = \frac{1}{2 \sqrt{x}} </math>  
Om <math> f(x) = \sqrt{x} </math> så är  <math> f'(x) = \frac{1}{2 \sqrt{x}} </math>  


Om <math> f(x) = \frac{1}{\sqrt{x}} \qquad </math> så är <math> f'(x) = - \frac{1}{\sqrt{x^2}} </math>  
Om <math> f(x) = \frac{1}{\sqrt{x}} </math> så är <math> f'(x) = - \frac{1}{\sqrt{x^2}} </math>  
}}


{{uppgrutsa | '''Härled deriveringsreglerna ovan'''
Tips: använd den generella regeln för derivering av potenser.
}}
}}


{{clear}}
{{clear}}
{{flipped | [[Diskontinuerliga_funktioner|Diskontinuerliga funktioner]]}}
{{flipped | [[Diskontinuerliga_funktioner|Diskontinuerliga funktioner]]}}

Versionen från 9 mars 2016 kl. 19.04

Ma3C: Derivatan av potensfunktioner , sidan 165-167
Derivatan av potensfunktioner Ma 3c, av Lärare Anders
Definition

Om [math]\displaystyle{ f(x) = \sqrt{x} }[/math] så är [math]\displaystyle{ f'(x) = \frac{1}{2 \sqrt{x}} }[/math]

Om [math]\displaystyle{ f(x) = \frac{1}{\sqrt{x}} }[/math] så är [math]\displaystyle{ f'(x) = - \frac{1}{\sqrt{x^2}} }[/math]


Mall:Uppgrutsa

Flippa = Gör detta till nästa lektion!

Diskontinuerliga funktioner