Derivatan av potensfunktioner: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 4: Rad 4:
{{defruta |
{{defruta |


Om <math> f(x) = \sqrt{x} </math> så är  
Om <math> f(x) = \sqrt{x} </math> så är <math> f'(x) = \frac{1}{2 \sqrt{x}} </math>
 
Om <math> f(x) = \frac{1}{\sqrt{x}} </math> så är <math> f'(x) = \frac{1}{- \sqrt{x^2}} </math>


}}
}}

Versionen från 4 mars 2016 kl. 12.07

Ma3C: Derivatan av potensfunktioner , sidan 165-167
Derivatan av potensfunktioner Ma 3c, av Lärare Anders
Definition

Om [math]\displaystyle{ f(x) = \sqrt{x} }[/math] så är [math]\displaystyle{ f'(x) = \frac{1}{2 \sqrt{x}} }[/math]

Om [math]\displaystyle{ f(x) = \frac{1}{\sqrt{x}} }[/math] så är [math]\displaystyle{ f'(x) = \frac{1}{- \sqrt{x^2}} }[/math]



Flippa = Gör detta till nästa lektion!

Diskontinuerliga funktioner