Största och minsta värde: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 1: | Rad 1: | ||
{{lm3c| Största och minsta värde|148-150}} | {{lm3c| Största och minsta värde|148-150}} | ||
{{#ev:youtube|dhqdVGk_bNw| | {{#ev:youtube| Mz58eQkiksA |340|right|Sid 148-150 - Hitta största och minsta värdet för en funktion}} | ||
{{#ev:youtube|dhqdVGk_bNw|340|right|Extrempunkter}} | |||
Fiffigt sätt att hitta extrempunkter: | Fiffigt sätt att hitta extrempunkter: |
Versionen från 8 februari 2016 kl. 22.34
Fiffigt sätt att hitta extrempunkter:
- derivera funktionen
- sätt derivatan lika med noll
- lösningens x-värde ger max- eller minpunkten
Exempel |
---|
För att finna det största värdet som antages av funktionen definierad av [math]\displaystyle{ f(x) = x^3 - 2 x^2 + x - 3 }[/math] för [math]\displaystyle{ 0\leq x\leq 2 }[/math] beräknar vi derivatan och bestämmer dess nollställen.
Eftersom andraderivatan är
så är
Värdena i randpunkterna är [math]\displaystyle{ f(0) = -3 }[/math] respektive [math]\displaystyle{ f(2) = -1 }[/math]. Följaktligen har funktionen f en lokal maximipunkt för [math]\displaystyle{ x = 1/3 }[/math] och en lokal minimipunkt för [math]\displaystyle{ x = 1 }[/math]. Respektive extremvärden är [math]\displaystyle{ f(1/3) = -77/27 }[/math] och [math]\displaystyle{ f(1) = -3 }[/math]. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt). |