Deriveringsregler för polynom: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 9: Rad 9:
:  <math>f(x) = x^2 </math>  
:  <math>f(x) = x^2 </math>  
:  <math>f(x) = x^3 </math>  
:  <math>f(x) = x^3 </math>  
<br />


{{defruta| Deriveringsregler polynom
{{defruta| Deriveringsregler polynom

Versionen från 27 januari 2016 kl. 14.40

Sid 130-135 - Deriveringsregler för polynom. Av Åke Dahllöf, Youtubelicens.
Ma3C: Deriveringsregler polynom, sidan 130-135


Det går att härleda deriveringsreglerna för polynom genom att använda derivatans definition.

Proöva själv med:

[math]\displaystyle{ f(x) = x }[/math]
[math]\displaystyle{ f(x) = x^2 }[/math]
[math]\displaystyle{ f(x) = x^3 }[/math]


Definition
Deriveringsregler polynom


Om [math]\displaystyle{ f(x) = x^n }[/math] skrivs [math]\displaystyle{ f'(x) = n \cdot x^{n-1} }[/math].
Om [math]\displaystyle{ f(x) = k \cdot g(x) }[/math] så är [math]\displaystyle{ f'(x) = k \cdot g'(x) }[/math]
Om [math]\displaystyle{ f(x) = C }[/math] där C är en konstant så är [math]\displaystyle{ f'(x) = 0 }[/math]
Om [math]\displaystyle{ f(x) = g(x) \cdot h(x) }[/math] så är [math]\displaystyle{ f'(x) = g'(x) \cdot h'(x) }[/math]