Lektion 4 - Faktorisera: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 4: Rad 4:
* Om andragradspolynomet p(x) har nollställen x{{=}}a och x{{=}}b kan vi faktorisera polynomet till p(x) {{=}} k*(x-a)*(x-b) där k är koefficienten framför x^2-termen
* Om andragradspolynomet p(x) har nollställen x{{=}}a och x{{=}}b kan vi faktorisera polynomet till p(x) {{=}} k*(x-a)*(x-b) där k är koefficienten framför x^2-termen
* Om ett andragradspolynom saknar nollställen, kan det inte faktoriseras!
* Om ett andragradspolynom saknar nollställen, kan det inte faktoriseras!
* Om ett andragradspolynom har ett enda nollställe, t.ex. dubbelroten x=a kan polynomet skrivas på formen p(x) {{=}} k*(x-a)*(x-a) = k*(x-a)^2
* Om ett andragradspolynom har ett enda nollställe, t.ex. dubbelroten x{{=}}a kan polynomet skrivas på formen p(x) {{=}} k*(x-a)*(x-a) {{=}} k*(x-a)^2
}}
}}
<br />
<br />

Versionen från 13 oktober 2015 kl. 21.47

Ma3C: Faktorisering , sidan 56 ff


Definition
Faktorisering
  • Om andragradspolynomet p(x) har nollställen x=a och x=b kan vi faktorisera polynomet till p(x) = k*(x-a)*(x-b) där k är koefficienten framför x^2-termen
  • Om ett andragradspolynom saknar nollställen, kan det inte faktoriseras!
  • Om ett andragradspolynom har ett enda nollställe, t.ex. dubbelroten x=a kan polynomet skrivas på formen p(x) = k*(x-a)*(x-a) = k*(x-a)^2