Lektion 4 - Faktorisera: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 1: Rad 1:
{{Lm3c | Sid 56 ff}}
{{Lm3c | Faktorisering | 56 ff}}


* Om andragradspolynomet p(x) har nollställen x=a och x=b kan vi faktorisera polynomet till p(x) = k*(x-a)*(x-b) där k är koefficienten framför x^2-termen
* Om andragradspolynomet p(x) har nollställen x=a och x=b kan vi faktorisera polynomet till p(x) = k*(x-a)*(x-b) där k är koefficienten framför x^2-termen

Versionen från 13 oktober 2015 kl. 21.45

Ma3C: Faktorisering , sidan 56 ff


  • Om andragradspolynomet p(x) har nollställen x=a och x=b kan vi faktorisera polynomet till p(x) = k*(x-a)*(x-b) där k är koefficienten framför x^2-termen
  • Om ett andragradspolynom saknar nollställen, kan det inte faktoriseras!
  • Om ett andragradspolynom har ett enda nollställe, t.ex. dubbelroten x=a kan polynomet skrivas på formen p(x) = k*(x-a)*(x-a) = k*(x-a)^2