Mall:Trigonometri grund: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 4: Rad 4:
[[Fil:1000px-Sinus.svg.png|thumb|left|CC Wikimedia.org]]
[[Fil:1000px-Sinus.svg.png|thumb|left|CC Wikimedia.org]]


<ggb_applet width="586" height="434"  version="3.2" ggbBase64="UEsDBBQACAgIAJpbiT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s1Vndbts2FL5en4LQxdBujSOK+kXjFkkLDAWypViyYRhyQ8u0rUUSXZFy7Ra93JtsL7BX6P2eaYekfv2T2lnbZTeWxJ9D8nzf+c6RfPJsmaVowQqR8Hxo4YFtIZbHfJzk06FVyslRaD17+uBkyviUjQqKJrzIqBxaZOBYqr1Mnj746kTM+BtEUz3k54S9GVoTmgpmITEvGB2LGWOy107LZZImtFhdjH5jsRRthzHyMp+XsIosSmiLs/F5IurHY7VgSkcshT1eylXKEFrQFLZkuiY8lwiJ5C2D8/imLea5eFVw+ZynZZYLhGKe2o15nuLOvdO5J82+4MHtdHh1R888hx5UCgbL8ELUw5VzLvJ0dQauuJnzJG+PC7NPjrUPT1gZp8k4obnyk/YpnAChN8lYzoaWF/oWmrFkOgM3uMSp1+XF+HIlJMvQ8ldW8KHlBIPQDf0gdDAhdmSreSvTRWw8wJEf2bZPQmyTCLYW0xTc5AYDHLgYYwc7JApcD+bs7NIrs8UlkxIAEIguWQvftEjGvYeX4oynbZM+/nM6l2WhGUaqJo3j0AL2FeqMp/k0ZVUbBofPWHwz4stLAyoxpq9Wcz1Fb2g01U5HBbiAgJlpdR3B1as2rXbajDJjzIjKhjLa9OPI0SP0dWSuhnpJbrZWnRzXp8Z2vUwikGqwDfbN4TVph5aFyjyR5/WDTOKb9qhqwg9lNmINf/o28aeyeXK8xriTG1bkLK34DNiWvBQmsjpUH7M4yeDRdFQuoQqun2ADpnXMpgWrN27i2ThM99pd7q41nxzXm9AxBXuNJQgTnEeqs1wBOXjOMyaLBBUf/pCLJL9Jk+ljCPe8FPqCFugIfVfJlRIaOeMA5ysmWYE+/C7KzEJjKsGapbbxhhc3Wp6u2FIiOuIL1YPAj8rJhy+oDsFSljEQIakJmpcZK5K4gUqZYKleHA5e1scfeKFxjNZSrmWxVpBqZksH6G6JaldEtZ2G7iCj8xlVVnGtlys4ftf/2ubFZCKYREuFJFr1+77n4z5iAtgCRrIkV4aB3BldqkQAd3QkQFklu4wB+Pycx1TqfGK2X2mYY+tZak6obmA919bTJ8mStRoBeCVvgYG0d+Q27OQM2J0zIbR8yK4K0BzIqRkDmjjX21T8nzNlXie3ejiag0u0BHWUuALuoxAKyYuU3axj6A+iLw/hnjBh5y44+RVOxP/cON0NpphnGc3HKKcZDH+ZQ4wLcLoGJlElBKKQ5penoJ5weMjyK31rAChlPeDU2K2sbcCvM1QD4am1AXFfi7dj7LsaYnUZmUsDsH0YwFo5hcLHruA50jdvje/0GJNUVQXRlkY9fi+hMBOq6Kt3fQaF3xKgeFiR+zECo4+svgs21a3vm7O7+QY7nuG/um7w/87uUfGoVe1Q7/Rpdcmmqn2NVKeGUGcbZJreTiZRWas9MrV2Ro27FjW7ZaWToLt+7dc4+3q0TQpYu68uoj/m7qOajtrvb7sL7XM69jo3Y4QpXJJsniZxIhsHp0oImhgH6m5WJzeMzVVZeJFfFTQX6mXFjOlUPTtQviigUIBkT9Nz2O0a2GcG7OVW9RjdDrg6fAPUaDfazm1o7xNFd0P7NkBxBWgdQE2C2+sAtwF6uxa92NAiUzShb1DVcqgwvbiXwuQObJXxP5M0vdhg6mw155JB4UoP06jOvE8gVp+Sva1WHXmByYXY2woC3mB35f3/q2Dpd+TtOqUI4GwjwOJ23PV7XPuisuUdBQIgJEFEPA/72Mb/5RsLIRXe24MOH6BUtIg7IVd/LUjhFfBHNknZUrt6X1y2x+SLXeVCxqWQH/5k+ZgdFpTdifc2Kh1fg+TcilEbk21I1innyAkGPibhfY7LzQSmPibgKol9/brk8sn1pKDxuw5m79+1qvr++snwuhpihqNvUWcsPJnm9213O7vt1WbM/baUKGFXVn+LX44TG+kwEef0iv3SdyvsRtJCvlJZENVFpePbbkjsCAdh4DrY0wTxBpHjuAFxnSgCMYp6efQw1WxiU6vm6UaI/v3XIbIJo9d0Ew+8wA4inzh+ELlh5Pt3rOc/zXeCOyujc7Aybo8M0ouMhtEPu4w/7hD80V5kJnuTOeb5ODFfH9Sn+Wow/WxMX6M0GRDs28ACHBIvAD5UfCYBcQKP+A7BYejuonPfCyPOU0bz5pB0nXudwPrS0u+Ygqz+s2JHUUznGgndJha02I9CTo9C6ivs9RO0UD9D9QMN1y2xFo1CHiqQzv0XSIh7N/QcHJAIE9slvh9W7xa+a9tB4ESuH3pRGO0k1FYHuztiFDz7cPFov4h0/2VExv+xa8nA8UI3aoKyfmnzA1J72w1ClY/uEqrxfQpVU6aF/y5Uj7v/2eh/Nqt/RZ7+A1BLBwirGVuj9wYAAGceAABQSwECFAAUAAgICACaW4k/qxlbo/cGAABnHgAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAADEHAAAAAA==" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
 
:
:
::::Peter Åsum har gjort ovanstående [http://www.geogebra.se/ma_a/trigonometri/sinv_ratvinklig_trigonometri_t.html GeoGebra om Sinus]
::::Peter Åsum har gjort ovanstående [http://www.geogebra.se/ma_a/trigonometri/sinv_ratvinklig_trigonometri_t.html GeoGebra om Sinus]

Versionen från 17 augusti 2015 kl. 13.23

Trigonometri grundläggande

CC By
CC Wikimedia.org


Peter Åsum har gjort ovanstående GeoGebra om Sinus

Andra länkar om trigonometri

Definitioner:

  • Motstående katet
  • Närliggande katet
  • Sin v = motstående katet / hypotenusan
  • Cos v = närliggande katet / hypotenusan
  • Tangens v = motstående katet / närliggande katet

Digitalt

Definition: Ta reda på vinkeln

Om y = roten ur x så är 'y2 = x. Dessa två hänger ihop och den ena kan ses som den omvända av den andre. Detta kallas inversen, den inversa funktionen.

På samma sätt som det finns en invers funktion till kvadraten på ett tal, nämligen roten ur så finns det en invers funktion till sinus och cosinus.

Om sin v = a/h då är v = arcsin(a/h) eller sin-1(a/h)
Om cos v = b/h då är v = arccos(b/h) eller cos-1(b/h)
0ch på samma sätt för tangens