Trigonometri Ma3C: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 16: | Rad 16: | ||
}} | }} | ||
== Lektion 2 | == [[Lektion 2 - Trigonometriska grunder]] == | ||
== Lektion 3 - Fasta värden == | == Lektion 3 - Fasta värden == |
Versionen från 17 augusti 2015 kl. 10.54
Lektion 1 - Algebra repetition
Uppgift |
---|
Repetitionstest
Skriv formler eller algebraiska förklaringar för detta:
|
Lektion 2 - Trigonometriska grunder
Lektion 3 - Fasta värden
En halv kvadrat
- [math]\displaystyle{ \sin 45 = \frac{1}{\sqrt{2}} }[/math]
-
- [math]\displaystyle{ \cos 45 = \frac{1}{\sqrt{2}} }[/math]
En halv liksidig triangel
- [math]\displaystyle{ \sin 60 = \frac{\sqrt{3}}{2} = \cos 30 }[/math]
-
- [math]\displaystyle{ \sin 30 = \frac{1}{2} = \cos 60 }[/math]
-
- [math]\displaystyle{ \tan 30 = \frac{1}{\sqrt{3}} }[/math]
-
- [math]\displaystyle{ \tan 60 = {\sqrt{3} }[/math]
Lektion 4 - Enhetscirkeln
Det handlar om trigonometri och cirklar.
En enhetscirkel är en cirkel i planet med radie 1. Ofta talar man om enhetscirkeln och avser då en enhetscirkel med mittpunkt i origo. Av Pythagoras sats följer att enhetscirkeln kan beskrivas i kartesiska koordinater som mängden av punkter (x, y) sådana att x2 + y2 = 1. I polära koordinater blir detta den trigonometriska ettan.
För att beräkna de kartesiska koordinaterna (x, y) för en punkt på enhetscirkeln som befinner sig vid vinkeln t mätt från x-axeln kan man använda cosinus och sinus:
- [math]\displaystyle{ x = \cos t \qquad y = \sin t }[/math]
Texten i ovanstående avsnitt kommer från Wikipedia.se
Geogebra
Viktiga samband
<ggb_applet width="494" height="351" version="4.0" ggbBase64="UEsDBBQACAAIAKRtJEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAKRtJEEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Rrbcts29jn9CgwfOslOJOFCgGQqpePE7WxmnKaz9u509mUHIiEZNUWyJCVLnj7sJ236Cf2A9Jf2ACAl6mLHl6Ru67EDEDg49xvBDL9ezlK0UGWl82zkkT72kMriPNHZdOTN60kv9L5++cVwqvKpGpcSTfJyJuuR5xtInYw8xcREjUPZwwzTni8j0YtwzHskFBFn4ZjyMPYQWlb6RZZ/J2eqKmSsTuNzNZMneSxrS/i8rosXg8Hl5WW/JdXPy+lgOh33l1XiIWAzq0ZeM3kB6LYOXTILTjEmgx/enjj0PZ1Vtcxi5SEjwly//OLJ8FJnSX6JLnVSn4+8MCQeOld6em5kEvAwMEAFKKRQca0XqoKjnUcrcz0rPAsmM7P/xM1QuhbHQ4le6ESVIw/3CWEcBywIoiDiIhSBh/JSq6xugFuigxbdcKHVpcNrZpak76E6z9OxNCjRzz8jiilGz81A3EBhEMJtYbeGmRuoG3w3cAfju+O+A/UdjO9gfOahha70OFUjbyLTClSos0kJ5ls/V/UqVZafZmEjPnkOMlX6CoAZBj9xOod1jJ+bPwF/vtkYbAtJOlTrcn5Hoi1JP/JvT5I+SFDW0iSHxKT8GjHFDUSd3LeRk/AOTSBlf+3fHkV2k5i7FN3zwwgK/3cRcThoQ2XYRAeqzg1s4z21mlUmXliEeGTcniAOsSEC8HKOSARDQBFEAyIc+RweSYiEGQPEAtjwEUMhMnCEIRscPIR//MAiE4gDMrMaQEwiAoR8xBkiNqZ8BJGEbFxCjFIGEJwjDocMeUINCiaQL+CJhcgHHk1IBgQAGRyEZyBPESOImcMkQFQgYfAR34S6CA3rgJIigZEgBiFENUS0i2aADxEz0ohGXTor5vWWiuJZ0k7rvFjbAqAhH23SnstPW1nxyTCVY5VCoTg1lkRoIVMTEZbQJM9q1BqRurVpKYtzHVenqq7hVIV+lAt5Imu1/Bagq5a2hY3zrPq+zOvXeTqfZRVCcZ7iNc95SjpzuuYaHlhnw+9u8M6G6MyDg3Rz2EHzSgH9vKxacJkkbwzEJjWAJt9l6epVqeRFkettMYYDW3OGah6nOtEy+xc4q6Fi9ILaEmTTVVuCGGUtI3mZnK4q8GC0/Lcqc0hVEe3jzg/E9MrtkID2/ZCsfzlwFksTeoTAjoigAoWYwoTC1uqavYayWqwNJJdqLfu0NHHdyG0e3lSv8nSzZKV/LYt6XtreAVJjaWQ6yqapsh5i4xoKc3wxzpenzjWYw3W2KuAJOwbGU6t1BJmBcuB32oxjN1oYw9kaClsYbCFw62s6We+TiFoIO47daKHAeR1rjaSkFZPgloyubD7D3lbUWM83ZX6e6fqkfah1fLGR1MB/N5+N1dp/tlGST4RyONjxr+GFKjOVNu4Mlpzn88pFZ8fTExXrGTy6jUYh0hjrn8CAW03UtFQt36ntypy67C7ueureskX1bZnP3mSLM/CEHQaGg5bLYRWXujAOh8ZQAi7UxqcSXUmoIEn3nIk/ED02lQLUUxvVQGTO6/O8tI0XJBQYLeRsJrMEZbbovMlqUBtkL2+TCCWklOURGAQQQEZZ2anlPp/XLcCRY7fBZsI5VTPo3lBtndb6/dp8Rxa7sRPKxz8CtR3zbvwAttcOaqrl1A1jN8i0OJemeWy0mcqVKrf0axG+zZMDxqjQ0h1Fq5HXs5Mr19u75tZwbOJvK2O71R0zgm85YT8i9qt7id2NWxvh95VaZuDK1iEgXxYuVAqlXJA5fmFSADqbmrbyfasv0ujrU6lr2/te6zJO1Y7rHTm3e7XncvHNLgchoOO1buOP6L4j7XXKx/dX/SaF1lDbL+AFprJNdd1kdDv5u04SZfs6V2H0VGUL4BRKK7wZ4lb5uNV+u7Ikrf+uSLN0RTqmAaOXeomOWvijFuoIeoKem7EG6ZHf4jriHTnVT5ljv3JZ1jQ4eqLjm835VpdlXh425zVZ5EtZ5NVXd8olzZE/Wkb5PAklm89U2XHrhZUbTs6b83zN+kPyTNfVyS010cBVqXmjRzOdWTQzCTphwiAcV9Cm1uo0hmqZbS41HGtNmwcvhNalwRqiUaSbTPSyU/KgiukrqNpyS5r7RNktkiI+lBS3TLQsSqBlkDQaPvYQLI68p3FePV2gv6Hf/osG8NaEnz2Hdj/bXnrmbTv24CMef/y4ZaTr6sKnQRgIHIlQcGZadOv5gRDYhx9GSBgF4WeoFKdqatYP55bjvbwib84oVYOt1aB81GKxUXDvgCpXh/V+1SV0n2qzk+H1rEh1rOu1KlMTAOv2EHx9v1m+UKow7yjvsrNSZpW5BHUwnSb8U5eK/5B7FAs49FctF7dQ6/FNaj2+ewU+fkAF/gxZqbcXHuxwWiK/X15au53LTxsdb2ep2+h+L1fdSvuPl7FI+361b5Q/ec46bOvWuNdUovHdrDv+g9iV9AnBlDJzBUY54YJ/0zMX9CuzRUPOA05JxAKGg5Bby4LFo9APcRBwhgmlOCR/Wkvb27kdO79yFjY1il4f0h/e32xve/+ztiZA77TztE9FGNEQ04BHVICmH9Lc2+8vd2rv300mlaqNB/DmoqS9p97xmL27wju04GW8SbtBe3WZpvnlP9QkVUur/U9oqn0j/XInI/2yayTcDwMqhImMKAqI8IP7Gam9x72/kXphYyX2WY3E8MOMdCLP1A87RgK1Wis13xDolpI2tjpTy/ojLV8NIGtNO/jHTKK6suJu66b59lPBy/xk853E3vZjr81y7Yt8Lcv6e9OHIGtj2scRY9jHgvgBjghp2hvIsxH3o8jnhHDKu93NHU3x/tamoHc0Bf3LmQLqXeRHHAsM1Y+2nWaEhYh4xEJOIzDRdbbYvzkwSmLN7cGXP83z+qtTnaGnJMS//q/34f0zNDIXCOjDe7fp7V8W7OmcParOd1QGuYwyf6MeErVdBIH0F0CFi4KI+CwQ1+ls0P22YT8fNv8V5uX/AVBLBwii0U0kuQgAAKcjAABQSwECFAAUAAgACACkbSRB1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAKRtJEGi0U0kuQgAAKcjAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAUAkAAAAA" " framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true" />
- [math]\displaystyle{ x = \sin (180-t = \sin t }[/math]
- [math]\displaystyle{ \cos (- t) = \cos t }[/math]
Dagens mentala kliv
- De trigonometriska funktionerna fungerar för vinklar som är större än 90o. De gäller inom hela enhetscirkeln.
- Cos t = x-koordinaten och sin t = y-koordinaten.
- Även det omvända gäller. Enhetscirkeln kan hjälpa oss förstå de inversa funktionen sin-1 och cos-1 som att man utgår får ett värde på axeln, går ut till cirkeln och mäter den motsvarande vinkeln.
Trigonometriska ekvationer
Det trigonometriska ekvationerna har ofta flera lösningar.
Fördjupning: Här är en lösning till ekvationen sin v = o.5 i Wolfram Alpha. Den visar två lösningar till ekvationen (samt fler om man går ytterligare varv runt enhetscirkeln).
Övrigt
Konstigt facit: Bry er inte om bilden i facit till 1301.
Lektion 5 - Triangelsatserna
Grader och radianer
360 grader motsvarar 2 pi radianer.
Här finns material att hämta... http://en.wikipedia.org/wiki/Trigonometry
Areasatsen
[math]\displaystyle{ \mbox{Area} = \frac{1}{2}a b\sin C. }[/math]
Härledning
Triangeln borde ritas om så att sidan b är bas och horisontell.
Dra en höjd mot triangelns bas (sidan AC i detta fall).
- Höjden h = a sin C
- Triangelns area A = basen * höjden / 2
- Sätt in uttrycket för h ger:
- Arean = 1/2 ab sin C
Wikipedia skriver om areasatsen
Lektion 6 Sinussatsen
[math]\displaystyle{ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} }[/math]
Härledning
- Ställ upp areasatsenför alla tre vinklar.
- Förläng med 2.
- Dividera med abc
Wikipedia skriver om sinussatsen
Lektion 7 Cosinussatsen
Lektion 8 Problemlösning
Uppvärmning
En reklambild från Facebook (till höger)
Vad bör man tänka på vid problemlösning?
- Rta Figur
- Sätt ut variabler och värden i figuren
- Välj Formel (eller sats)
- Utför beräkningarna
- Kontrollera om svaret är rimligt och om det finns flera svar
Uppgift |
---|
Grupparbete
Denna lektion ska vi jobba med problemlösning i grupp. Ni väljer ett av problemen i boken och löser det tillsammans. Lösningen sk gå att presentera med projektor och ska lämnas in. Vem som helst i grupen ska kunna presentera den. Era lösningar kommer att publiceras på Wikiskola. Ni får 20 minuter på er. |
Lektion 9 Cirkelns ekvation
Definition |
---|
Cirkeln
|
Centrum i origo
En cirkel med centrum i origo och radien r kan skrivas på formen:
- [math]\displaystyle{ x^2 + y^2 = r^2.\!\ }[/math]
En punkt på cirkeln har ett avstånd från origo som beskrivs genom Pythagoras. I figuren till höger är radien roten ur 4, dvs 2.
Wikipedia skriver om Pythagoras sats
Flytta cirkelns mittpunkt
I ett koordinatsystem kan en cirkel med mittpunkt i (a, b) och radien r, beskrivas som mängden av punkter som uppfyller ekvationen
- [math]\displaystyle{ \left(x - a \right)^2 + \left( y - b \right)^2=r^2. }[/math]
Ekvationen kan ställas upp genom utnyttjande av Pythagoras sats för avståndet mellan punkterna [math]\displaystyle{ (a,b) }[/math] och [math]\displaystyle{ (x,y) }[/math].
Se det som att man flyttar cirkelns mittpunkt från origo till punkten [math]\displaystyle{ (a,b) }[/math] genom att sätta in a och b i uttrycket ovan.
Exempel
Cirkelns ekvation är:
- [math]\displaystyle{ 9=(x+2)^2+(y-3)^2 }[/math]
Den här cirkeln har sin mittpunkt i x = -2 och y = 3. Det är de värdena som ger noll inom respektive parentes.
Pröva att sätta in x = 0 respektive y = 0 ger punkterna där cirkeln skär axlarna.
Var skär cirkeln x-axeln?
Cirkel med glidare
<ggb_applet width="635" height="441" version="4.0" ggbBase64="UEsDBBQACAAIAGV2M0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAGV2M0EAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vjbjts2EH1OvmKgpxaIbVGUZCuwEzhBgwTYJAU2LdK+URItM9bFFSlfFvmdfkl/rENSkmVvdpsmQRE0yC4vM5zhXM5wtPOnhyKHHa+lqMqFQ8auA7xMqlSU2cJp1Go0c54+eTjPeJXxuGawquqCqYXja06R4iSOPELCeEQiPxr5EU1GkT8NR2QaJMxnKeOEOwAHKR6X1RtWcLllCb9O1rxgV1XClFG8Vmr7eDLZ7/fjTtW4qrNJlsXjg0wdwGuWcuG0k8co7uzQnhp2z3XJ5P3rKyt+JEqpWJmgfm1CI548fDDfizKt9rAXqVovnJAGDqy5yNZoUxAQByaaaYsO2fJEiR2XeHSwNDarYusYNlZq+gM7g7w3x4FU7ETK64XjjgPPm1E/9IMwjLyI+A5UteClank7nZNO2nwn+N6K1TPrZQdUVeUx0xLh40fwXM+FR3ogdvBwCENLcu2eS+3g2cG3Q2B5fHvct6y+5fEtj08d2Akp4pwvnBXLJXpQlKsao9evpTrm3Nyn3ThZTx6hTVLcIDN1MU2sy3HfdR/pnxB/fE2YnBtJBlpV3fxLpZ1KE9LPVel9laG0N5N6t3V6wR1mhvcotXZ/jp0kGLgWVZn/5ueWRnqfmZca7frrFIb+f2LifNJBZd6iA+Ra87bZo3ghNV5oBEGk055AgNgIp5jlAZAIh6kHiAYgAfgBLskMQj1OgU6R4AOFGWg+QsGAI5jhL39qhIUQoDC9O0VMAkFFPgQUiMGUD4gkMLhEjHoUOYIAAjyk1RNPi6Ah+CGu6Ax8vKOG5JQgI8WDuEb1HlACVB8mU/BCCLU84muohzN9dRTpQehCSLRARDUi2qIZ+WdAtTVh6y5Rbht15qKkSLupqrZ9LJAb69Gp6tn6dFYUH8xzFvMc34lrHUmAHcs1IoyiVVUq6IIY2r2sZtu1SOQ1VwpPSfjAduyKKX54gdyy0214k6qUP9eVel7lTVFKgKTK3f7OVU4Gc6+/NS7ogOAPCcGAEA7m00/qrZACjeSov6plx87S9JXmOJUG9OTbMj8+qznbbCtxbsZ8Yp6cOW+SXKSClb9ismot2i/wyRfIJ7S7SFWn10eJGQyH33ldYakidBwN/zlwtBRKonMKok8mTGPPv6BM8dAdpJnVzHd9gNiB97ZntUiH81fyWZWnvSeM8c/ZVjW16RywMtbapGWZ5dwkiIE1PsvJJq4O1zYzqJX17rjFlWv1x5lxOmBh8AJ0TdaOsR0Nj75Yz+UaHtdwuF2qibSnk8gzHGaM7Wi4MHft1VpDSWclcTs1Qppy5jpnoDGJrx/5phTqqlsokWxOlmr+N00R8z59zkWSbyZS3xnbDanet/2bnv82mL9bc8VsI0KDaDadBvjbi2Yzm6QX6Tnf8LrkeYsGTISmaqQF9wAoKU9EgUtLaB3KdLB/QQPsbsqzmnd256ans+42VHeY6Le2jagXdVW8KnfvMJMuLjCfdLecy6QWW52vEOMLsuGnnETbGT5A6fCchi+6LtEPDbpXadc+F/WGY1MJfLMzLxAUPIUMncJqjfpGrSvMo5d//blhJfyUY1snlchQARYvDJOGeM4L7OhAmUwum4LXIumjykyziBY0rZFk7FszdUihij9gVb3IhFN8kXxHrgPLt2sTWdJmNDvy+syPRtrrKu0Ut2pz3ZtCIfCxHSG2CnbA9xXlxRILrsLuHANXnrpze7O2YGFrozMLT3gzPTniFgn1bCUOvC8S6DNxgwnEzow5YU7hW7DBhleaJky1JcBMXoo05WV/W1Ziqpm4YDncWnMBXyJuYdQf3aL5pvgM0qQNzD+GKL4MkTd2/xch8voQ0XtDNMD29xqj+nuOkfsNUBQE3z+KDtsatWkxrYeXDuDmwvmBPYL4x06Q6QdsH3ke1JbQH/6S8Omvi8wOsR36CLqfGcHh6yN1FHRJ1kEweLmxr6f9U4C+sO5Xzhpcu3vxbA0dlVRFwcoUSvPJg09MknPn1IMz13iOEZ3W1sBGdYTECmtF3HIhvmEDVCRf5MK7EHC//96uVpIr7a4RNd4aBfST7r3VYQ3ylN6fp9gJ83KHdmDjDXBw20bm6NrrwU23c0DfjczWkbRbN2QQOMz2Whxg2fEvO66lpycRfhQtaSt0id8KI5MCS/xQGPWFhf9R2vtL24Xp7x+xEslltCfDvsJ0/u0fsZ78DVBLBwhJdoCiagYAAGETAABQSwECFAAUAAgACABldjNB1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAGV2M0FJdoCiagYAAGETAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAAQcAAAAA" framePossible = "true" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "true" showAlgebraInput = "false" allowRescaling = "true"/>
Det ligger ingen film att titta på till nästa gång.
Däremot vill jag att ni tittar på bilderna ovan en gång till. Sen vill jag att ni kikar på uppgiften som ligger på nästa lektion. ladda ner filerna och spar apå din dator och börja ändra i koden för att se vad som händer. Då kommer du att vara förberedd inför lektionen och få mycket mer ut av den.
Javascript - Cirkeln på parameterform
Det här är en digitalövning där vi ska titta på hur man ritar cirkeln på parameterform och hur det görs i javascript.
Det vi sett tidigare med cirkelns ekvation kallas att använda kartesiska koordinater. Problemet är att man inte kan lösa ut y som en funktion av x utan att ta roten ur. Roten ur ger ju som bekant två rötter, en positiv och en negativ. Det ställer till problem genom att en funktion bara ska ha ett y-värde per x-värde.
Man kan i och för sig tänka sig att rita de båda värdena samtidigt men det finns ett bättre sätt - polära koordinater
Parametrisering
Tänk på den rätvinkliga triangeln med hypotenusan r. Då kan man utgå från cirkelns mittpunkt i origo och beskriva x med cosinus och y med sinus som vi gjort tidigare. X- och y-koordnaterna uttrycks med hjälp av radien r och vinkeln t. Det kallas för parametrisering. r är parametern och t är en ny variabel, vinkeln. En parameter kan ändras från cirkel till cirkel vilket ger ändrad storlek (radie) men den ändras inte medans man ritar cirkeln. Gör man det får man helt andra former och det finns faktiskt exempel på det med på spelprogrammering.nu men det får du kolla på själv senare.
- [math]\displaystyle{ x = r \cdot \cos t\, }[/math]
- [math]\displaystyle{ y = r \cdot \sin t\, }[/math]
För r = 1 erhålls enhetscirkeln, det vill säga cirkeln med radie 1 och med mittpunkt i origo. t är i detta fall en vinkel som ökar från 0-360o.
Javascript
Idag ska vi äntligen jobba med Javascript!
Kartesiska koordinater
Uppgift |
---|
Prova att använda cirkelns ekvation och rita en cirkel.
Tips: du måste lösa ut y. (exemepelvis ur y2 + x2 = 400) Ladda ner följande filer i en mapp och pröva själv genom att ändra i koden:
|
Facit: (klicka expandera till höger)
Polära koordinater
Titta på de här exemplen om hur enkelt man ritar cirklar med polära koordinater:
- Titta först på en punkt och en vinkel ritad i kartesiska koordinater: http://spelprogrammering.nu/bokexempel/08/06.html
- Läs första sidan
- Koden ovan anropar en funktion som heter circle och som finns i ett bibliotek på sajten spelprogrammering.nu. Undersök hur funktionen ser ut.
- Ritas cirkeln på så sätt som i matteboken?
- Tänk på att funktionen circle anropar: context2D.arc som verkar vara gjord i C++ och höra till själva canvas-funktionen (den näms i förbigående på sid 31 i boken). Vet du?
- En cirkelbåge som går 360 grader är praktiskt. Det kallas polära koordinater.
- Kolla http://spelprogrammering.nu/bokexempel/08/enhetscirkeln.html
- En båge med vinkeln en radian: http://spelprogrammering.nu/bokexempel/08/09.html
- Fler matteexempel: http://spelprogrammering.nu/bookexamples08
- Kan vi gå tillväga som i funktionen för triangeln och skapa en cirkel med vår formel från matteboken?
Mer: Testa funktionen att rita med polära koordinater i GGB.
Lektion 11 - Gör ett facit till trigonometriprovet
Uppgift |
---|
Formativ bedömning
jag tittar igenom och delar ut uppgifter till personer efter vad de behöver öva på. Gemensamt arbete i Google Docs där provfrågorna redan ligger.
Genomgång och respons från mig på facit. Förklara hur egenbedömning med generell matris går till.
Sedan egenbedömnig av proven |
Facit ni gjorde inbäddat
Argument för självbedömning
Argument för självbedömning straxt efter mitten i filmen: http://www.ted.com/talks/daphne_koller_what_we_re_learning_from_online_education.html
Självbedömning
Nu har vi tittat på kunskapskraven, tillverkat ett facit och vi lärarare har satt betyg på era prov. Dessa betyg är dock hemliga en stund till. Nu ska du gå igenom ditt prov och bedöma uppgift för uppgift och fylla ett betyg som du tycker är rimligt på varje uppgift. Sedan väger du samman betygen tille tt betyg för varje typ av uppgift. På detta prov har det funnits uppgifter om:
- Grundläggande trigonometri vilket är sinus, kosings, tanten, rätvinkliga trianglar och de trigonometriska funktionerna i enhetscirkeln. Detta heter sinus i mallen.
- Cirkeln ekvation. Det heter cirkeln i mallen.
- Trinagelsatserna. Det är areasatsen, sinussatsen och cosinussatsen.
Mallen för sjävbedöming som pdf finns även i wordformat