Cirkelrörelse och centripetalkraft: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 11: Rad 11:
:<math>F = m r \frac{4\pi^2}{T^2}.</math>
:<math>F = m r \frac{4\pi^2}{T^2}.</math>


In particle accelerators, velocity can be very high (close to the speed of light in vacuum) so the same rest mass now exerts greater inertia (relativistic mass) thereby requiring greater force for the same centripetal acceleration, so the equation becomes:
:<math>F = \frac{\gamma m v^2}{r}</math>


{{enwp|centripetal force}}
{{enwp|centripetal force}}

Versionen från 8 oktober 2014 kl. 08.53

Teori

In simple terms, centripetal force is defined as a force which keeps a body moving with a uniform speed along a circular path and is directed along the radius towards the centre

The speed in the formula is squared, so twice the speed needs four times the force. The inverse relationship with the radius of curvature shows that half the radial distance requires twice the force. This force is also sometimes written in terms of the angular velocity ω of the object about the center of the circle:

[math]\displaystyle{ F = m r \omega^2. \, }[/math]

Expressed using the period for one revolution of the circle, T, the equation becomes:

[math]\displaystyle{ F = m r \frac{4\pi^2}{T^2}. }[/math]


Wikipedia:centripetal force

Kommentar

Boken tar upp dåligt det faktum att:

Centripetalkraften motsvarar resultaten av de övriga krafterna (exempelvis normalkraft och tyngdkraft)

Filmer att flippa

NoK Heureka Fysik 2: 54-60

Centripetalacceleration med Daniel Barker
Centripetalacceleration, del 1 med Daniel Barker
Centripetalacceleration, del 2 med Daniel Barker

Frågan är vilka filmer som är bäst och vilka man inte behöver se så noga på

Eller ska alla vara kvar?