Mer geogebra: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 3: Rad 3:


<script type="text/javascript" language="javascript" src="
<script type="text/javascript" language="javascript" src="
http://www.geogebra.org/web/4.2/web/web.nocache.js"></script><article class="geogebraweb2" data-param-width="530" data-param-height="467"  
http://www.geogebra.org/web/4.2/web/web.nocache.js"></script><article class="geogebraweb" data-param-width="530" data-param-height="467"  
data-param-showResetIcon="true" data-param-enableLabelDrags="true" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="true" enableLabelDrags="true" data-param-ggbbase64="UEsDBBQACAAIANU4p0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADVOKdCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1YW2/bNhR+bn/FgZ62IbFJXe3CbpFmKFYgLYqlG4Y9DKAk2majGyTKl6I/fueQki07aZqmW9EkNkXy3L5zI5XZi22ewVrWjSqLucNHzAFZJGWqiuXcafXifOK8eP50tpTlUsa1gEVZ50LPHX/kOgc+nI1cj5hVOneSaOEvJhE7T8JYnvsi4edxlKKoeMp8yQMvEakDsG3Us6J8K3LZVCKR18lK5uKqTIQ2MldaV8/G481mM+q1j8p6OV4u49G2QQFoedHMne7hGYo7Ytp4htxljI//enNlxZ+rotGiSKQDhKpVz58+mW1UkZYb2KhUr+ZOEEYOrKRarhBm4CPMMRFViLWSiVZr2SDrYGow67xyDJkoaP+JfYJsD8eBVK1VKuu5w0bu1I3CyTSY+l4QuiF3oKyVLHRHyzud417abK3kxoqlJ6PRZ1M0dK0aFWdy7ixE1iAqVSxq9CgaVLc4bfQuk7Go+/nBHn6Gv0igPkqShaGzbkDMQXTGI/csYuwsCJi1ZajYAV2WmZHK4NMncJnL4IwGbgcXhzC0W8yuMc8Orh18OwSWxrfsviX1LY1vaXzvHpDd/ICyWziC2YP0hiA5gqNPiB+D/gTkZACSE4hPwMl6M3hAdnNjPw1+Nw3tNDIDZ3bg3eaEvqY0Cb8RkfcoRHyg1SbD55XeSpZeoymOh2p0vwnnHiUPw9s63eAzKO9z7mlN3PbtXmcwLAisA/ozn1savftgfrEKH6Ew9L83xIh9D4izcd/lZl3pQbMi2i5btcwb6jjeFAJTRxwCLMwwwj4RAJ/iEFGBusAD8AOc8gmENEbgUU364MEEiI57YNpLMMEvPzLCQghQGK1GtnLB8yHwgJuu5AP2IjCdDbuc6yFFEECATKSeuyTCC8EPceZNwEcbqalF1Dg8ZMQ5qnfB4+ARM4/ADSEkedynZhlOyHQU6ULIIDRdA/si9kTbD5F+Ah6hwQyvykbtvbuSWdU7yfhRFVWrj3yX5Gn/qMtqH0NDnZbJzcu9r7sdKRo9JMOj6HDg2aPp6Dx8MstELDO8NVxTIgCsRUYlbDQsykJDnwS+XVvWolqppLmWWiNXAx/EWlwJLbevkLrpdRvV5pieyTbJVKpE8SdmCYkggXDnqe2zTktSlnV6vWswdWD7t6zLuTP1R2z4M3VgZ3c8fzKaDn+wzppEUM4H7JgJS37XbfnTY6aJ1SzXe2RiK5ve+8tapcPn183LMkv3nq5KVehLUem2Nhcw1FMTpItimUnjWRNxvMokN3G5vbYu9ays97sKZ8zqj5eXZVbWgAXpBgES4IhegRjBcEtCdu2JmCFhhoD1IVLpyT4n5LEdDQ1G3NrVoeQ9RM56JaoxPQQFDDPSpAvditpC6at+olVyc4BJ9G/bPMZM69iORfL/QqQh+FXZW6G9AZukO0m32Y2sC5nZpCowsG3ZNjbL95n6ZNY28p3Qq4si/V0usT7fCeqRGrVZ0gOIVCYqR0a73nlTUJj/QOvtaiqXtexBZ+YGbH1tdtkwxW8tG1Gv6jJ/XazfYw6dmDob93hmTVKrijIVYmzaN/KQjalqBLb8dMiH4BtEkVD3Qddp8qsDotWrsjaXXCxhPDDgjfiADRNT0/DkuShSKMx58Y5y3Dn0KcHmzu4CY2oNL1vdr15YSzt2agGZzPGWDNpkuimWfdgvjEiKL5TxB2xMJ2lxcD1u35n2pj5EVq0EXdE7P2ZiJ+sjzxp5b8r01N8YTuMUbDYVCaBsq6S0eWotxocKBZrSHmSNCWEDW6sWdmgKjR/32YgvE4SVyt0qDYarJ7HH1LVu+oLDXv5YDnuMu4LOXeH/4q6izWWtkr1DhHEYcrYdPx+5ftdLv8WNbOBE/kAn9mozeqOEXBXEjO8sudiSXdjwRdyUWavxtRp7SHF4rbbGdacm3qTJdcjjTbzOmdzz6WmhtnJ/VGFxq4/Y9o572KH5azzKb/BVtTFHlu4OIvPwm0pTWewtvl0n+HLFbsee3RX7h8fq8jRWbBT8MJE6512gokeEKerDNAm+a5juqM8vx2hb1aiNxHQ+XuDVcksX0J+2P8McLuEXEP/gs71kHsd00RbmmHEOzPcHcNAjHhLBr2xYX+/GoSvGw4PTXGq7/2k9/xdQSwcIjn+YtT0GAACDEwAAUEsBAhQAFAAIAAgA1TinQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADVOKdCjn+YtT0GAACDEwAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAANUGAAAAAA=="></article>
data-param-showResetIcon="true" data-param-enableLabelDrags="true" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="true" enableLabelDrags="true" data-param-ggbbase64="UEsDBBQACAAIANU4p0IAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACADVOKdCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1YW2/bNhR+bn/FgZ62IbFJXe3CbpFmKFYgLYqlG4Y9DKAk2majGyTKl6I/fueQki07aZqmW9EkNkXy3L5zI5XZi22ewVrWjSqLucNHzAFZJGWqiuXcafXifOK8eP50tpTlUsa1gEVZ50LPHX/kOgc+nI1cj5hVOneSaOEvJhE7T8JYnvsi4edxlKKoeMp8yQMvEakDsG3Us6J8K3LZVCKR18lK5uKqTIQ2MldaV8/G481mM+q1j8p6OV4u49G2QQFoedHMne7hGYo7Ytp4htxljI//enNlxZ+rotGiSKQDhKpVz58+mW1UkZYb2KhUr+ZOEEYOrKRarhBm4CPMMRFViLWSiVZr2SDrYGow67xyDJkoaP+JfYJsD8eBVK1VKuu5w0bu1I3CyTSY+l4QuiF3oKyVLHRHyzud417abK3kxoqlJ6PRZ1M0dK0aFWdy7ixE1iAqVSxq9CgaVLc4bfQuk7Go+/nBHn6Gv0igPkqShaGzbkDMQXTGI/csYuwsCJi1ZajYAV2WmZHK4NMncJnL4IwGbgcXhzC0W8yuMc8Orh18OwSWxrfsviX1LY1vaXzvHpDd/ICyWziC2YP0hiA5gqNPiB+D/gTkZACSE4hPwMl6M3hAdnNjPw1+Nw3tNDIDZ3bg3eaEvqY0Cb8RkfcoRHyg1SbD55XeSpZeoymOh2p0vwnnHiUPw9s63eAzKO9z7mlN3PbtXmcwLAisA/ozn1savftgfrEKH6Ew9L83xIh9D4izcd/lZl3pQbMi2i5btcwb6jjeFAJTRxwCLMwwwj4RAJ/iEFGBusAD8AOc8gmENEbgUU364MEEiI57YNpLMMEvPzLCQghQGK1GtnLB8yHwgJuu5AP2IjCdDbuc6yFFEECATKSeuyTCC8EPceZNwEcbqalF1Dg8ZMQ5qnfB4+ARM4/ADSEkedynZhlOyHQU6ULIIDRdA/si9kTbD5F+Ah6hwQyvykbtvbuSWdU7yfhRFVWrj3yX5Gn/qMtqH0NDnZbJzcu9r7sdKRo9JMOj6HDg2aPp6Dx8MstELDO8NVxTIgCsRUYlbDQsykJDnwS+XVvWolqppLmWWiNXAx/EWlwJLbevkLrpdRvV5pieyTbJVKpE8SdmCYkggXDnqe2zTktSlnV6vWswdWD7t6zLuTP1R2z4M3VgZ3c8fzKaDn+wzppEUM4H7JgJS37XbfnTY6aJ1SzXe2RiK5ve+8tapcPn183LMkv3nq5KVehLUem2Nhcw1FMTpItimUnjWRNxvMokN3G5vbYu9ays97sKZ8zqj5eXZVbWgAXpBgES4IhegRjBcEtCdu2JmCFhhoD1IVLpyT4n5LEdDQ1G3NrVoeQ9RM56JaoxPQQFDDPSpAvditpC6at+olVyc4BJ9G/bPMZM69iORfL/QqQh+FXZW6G9AZukO0m32Y2sC5nZpCowsG3ZNjbL95n6ZNY28p3Qq4si/V0usT7fCeqRGrVZ0gOIVCYqR0a73nlTUJj/QOvtaiqXtexBZ+YGbH1tdtkwxW8tG1Gv6jJ/XazfYw6dmDob93hmTVKrijIVYmzaN/KQjalqBLb8dMiH4BtEkVD3Qddp8qsDotWrsjaXXCxhPDDgjfiADRNT0/DkuShSKMx58Y5y3Dn0KcHmzu4CY2oNL1vdr15YSzt2agGZzPGWDNpkuimWfdgvjEiKL5TxB2xMJ2lxcD1u35n2pj5EVq0EXdE7P2ZiJ+sjzxp5b8r01N8YTuMUbDYVCaBsq6S0eWotxocKBZrSHmSNCWEDW6sWdmgKjR/32YgvE4SVyt0qDYarJ7HH1LVu+oLDXv5YDnuMu4LOXeH/4q6izWWtkr1DhHEYcrYdPx+5ftdLv8WNbOBE/kAn9mozeqOEXBXEjO8sudiSXdjwRdyUWavxtRp7SHF4rbbGdacm3qTJdcjjTbzOmdzz6WmhtnJ/VGFxq4/Y9o572KH5azzKb/BVtTFHlu4OIvPwm0pTWewtvl0n+HLFbsee3RX7h8fq8jRWbBT8MJE6512gokeEKerDNAm+a5juqM8vx2hb1aiNxHQ+XuDVcksX0J+2P8McLuEXEP/gs71kHsd00RbmmHEOzPcHcNAjHhLBr2xYX+/GoSvGw4PTXGq7/2k9/xdQSwcIjn+YtT0GAACDEwAAUEsBAhQAFAAIAAgA1TinQkXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADVOKdCjn+YtT0GAACDEwAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAANUGAAAAAA=="></article>



Versionen från 7 maj 2013 kl. 07.20

Exponentialfunktioner

Jämför

Jämför med den allmänna formen för andragradsfunktionen:

[math]\displaystyle{ y = ax^2 + bx + c }[/math] (bortse från de sista termerna)
[math]\displaystyle{ y = ax^2 }[/math] (a är en konstant, vi kan lika gärna skriva c)
[math]\displaystyle{ y = C \cdot x^2 }[/math] (tänk nu att vi kastar om x och 2, C är en konstant )
[math]\displaystyle{ y = C \cdot 2^x }[/math] (här har vi ett exempel på en exponentialfunktion)
[math]\displaystyle{ y = C\cdot 1.5^x = C \cdot (\frac{3}{2})^x }[/math] (Vi kan ha olika tal som höjs upp i x)
[math]\displaystyle{ y = C \cdot 0.5^x = C \cdot (\frac{1}{2})^x = C \cdot (2^{-1})^{x}= C \cdot 2^{-x} }[/math]

på generell form:

[math]\displaystyle{ y = C \cdot a^x }[/math]
talet a kallas basen. x är exponenten

Växande

Tänk på pengar på banken med ränta varje år. Pengarna växer med ränta på ränta. 15 % innebär en tillväxtfaktor om 1.15 (förändringsfaktorn). Antag att man har 2000 kr från början. Tillväxten blir då exponentiell. Det tar bara fem år till en fördubbling.

Filen ligger på HD.