Integraler Ma3C: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 57: | Rad 57: | ||
Jämför med mekaniken, sträckan är arean under en vt-graf. | Jämför med mekaniken, sträckan är arean under en vt-graf. | ||
== | == Problemlösning med integraler == | ||
{{Lm3c|Tillämpningar|229-232}} | {{Lm3c|Tillämpningar|229-232}} | ||
Derivator och primitiva funktioner i en behändig formelsamling: | Derivator och primitiva funktioner i en behändig formelsamling: | ||
* [http://sv.wikibooks.org/wiki/Formelsamling/Matematik/Derivering_och_integrering Formelsamling på WikiBooks] med derivering och integrering. |
Versionen från 2 maj 2013 kl. 08.56
Intro - Primitiva funktionen
Gissa och öva.
Fundera över det inversa sambandet
Öva på OlleH
Intro - Riemannsumma
Kan man tänka sig någon trevlig frågeställning som ingång till integralerna?
Börja med att visa Riemannsumman för att ta reda på arean under en graf.
<ggb_applet width="930" height="551" version="4.2" ggbBase64="UEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZzVXCTiUaxtWBmOfGMnEGFtkyxLZGVKWspbGLkvKNpY0tnQa24gYynJsoRkyM2hkGvs5lpghFRqUJQdZy1iPnX/8//V/1/V93/U+y/0+7/O87/09X6qdzXV+HggPGxsbv6XFVQfWm8a6c4CcrKeEBYXKxiYItLwKvxX1/XdxbOgthkTP4TvNSMKQVfHiQz0fV/3fo+0OPBmR9Rqjem9awO1nRTZfDWJsSBkmhE5MqlqNFAChrtYp0yWbPNcu4w0R8gaekpLtAudfFu7HgnyEhE3/YOPe1frxrmSiuS9kNGjlAop5GH/v0/jEvk7jt9ZXrfMoj+2zqRqHh4cOdnYwdnZ2U1roCH2yNVYF5UG9ui94WVvbys8P7yIk9Oxwf9saiazdAJzqyZCYETFJbo2dnZ93XR9XAIqh7OqXlpdfw54+fPiQdsfzMV7IQzjwadq/e1vLk36XTciEioruuldP5QC6T45aZufmIMzGEjDhBuRXX8clO9xfpu7u0oaGGSKn1L3NzBJiHm8u2FcRiY61rq6u+JYWt97e3lvPOK9niJM3/TVr0CYCBzEvX76ktT3eTz9TaBFG5nusj1lf4382xausIvLgwRlL6w1SpzaJPYRqEV5nEduMPJ+REhX1PEJtDp8H0x97dynDXAMqqixYOPD1K86hFJaamrqkNZ3w7BnP0LEq7uuTNHRiQ8JDFIpe5Vjp61X6g3pKVK4NlNcnw9NmgPt6Ky5BWldXmpsbqtu2741/+yVCaqY17PywDMccXvjvNjExaXNz6YaJ85m8uVzqHETOOb5BekNCdoLqsD2Ix9tyemYmJaS3amadKgg1OCf86gwH+Zz/pyJ70c8InD6zxbHCplhv7lhmWoDotOxihZ1oRhGDLVgGDst7XPu3l1qN4ogBP7aMcqTLAkutYzhjxC/5dNuNJ0FIZMBztJPgRxUZIAGkdWdPlYhvnlBJrU51+Ooou/V4yyGaPNgc1DKogBe1at2Xo8pZxz5pRrlGIxtnH80TRnpUoY7WQYENg1Pu6F81QZT/58gbuuBw2lL8ElBPXoB1KWHITxe+U4gBzlFtdvh0pOZLWYSTOyE7MRcgd32IcYEZ34Bdm2y4KckMiLAMsyW7+N9g2186CFRl7EicoAl4Pjmk/Bwz7L6BbWkxuG0dtjKuu0U8k56RgcQx181zajz4PdwIC9VTtQ03MUkBE+rCuPr6WwQiUQwnbB4R8c4K7AtQB4YJ9GRKZtI33t/w/6C6mSL9HhCWItITg/AAkZBIZB6vqCotR6nEhXR0BP9Lbk8ueSjrFnNoMDx4oW/VuLSW2WSV9YWhBTM0FOcXuzgxMeEg3jkR0X0bO1RpG+vp2RQFV/kRtzH+5UgU/3b1AGtwmJ07XOZgbl57WdvDfhmrqHTJyqxThIJ0HdOiCIY2j+HfvLm+tLyfPF3KOxlJpwdPzmBto6NrZ+ceEUdo7NbFlR7oX79UKbVHzd0zyX0JO6c3EIRhyktYf7//7dtqDkgk1SXvxZDcGBWlCC8oqCFsWzQshLX7ODtGWAab9X48cHLHjnJNNaSnIxnxozUj/5h27ycmns0R9PAxzO5jaG8qjcz0O8rb+nVyIOP3mEsnc0QRIu3jMvy8L1j01F6562UDx6iYyISSOOfAiVdFMPZBL8I0wYlqapUwX5JJYLQyX2IdCXaOK3QrYIdikPXSB6nN3mNxb+HcYhB0oOAw4WmjGaD9HLaoSJxhgsFRqRRKFb4k1f6Yp8y6JUwiF8g2MGLNFMTmTcqrqPTrF8rkbm1txe/76P97fXK0IrPTSEVFRWqj4xGps/RCcV7Jqgkz4bCYpzu69C4WnW4Koo6puFJDcsrLpZGo7Y8fb0T+0+imKjIu5v8N6JZXXKxCoVCWKJOcm49kgflYbKnqfT4eAoGwPiY5tgYdC4Xu6fAZfyBBy9Y79n+PUa39/ef55/Hb7Uc2gIlk72olfR/QGS13/nmODKPmR7/rfh5/gBWnQ8C6Pq0fDOY44KuBj9jEQzjYpoX0L8eY8yrZSgQ4w+0c8a+4vcFXufq7YZC1FIF8ctdlXBPCl48UySZ+7iPXXNWxwHsOToZJ7ZAIG0bi4apklIdeiCmpPOHxjK5OsVmKwLeKfp8bHO31GvljWqG0aoGC50+RXn+7IRBvstUtrq8S2af+ZtNVs/X5khHcXQoB8NZHnmCwzXsbGLMQxA7+GK12QX0EtH+oMDaYkZCFwDdCo7sHwZp8H8USQIV/SBrLG9R1rKNDFWq2TJKSipteIKxAPstavRsY282U4LjqtJsYrvRT+i7jCRyb3SPt6CjA1J6OD3EvtF2XWyJfP0ld9CpXMwLSHMDm1jDK+bYr1keN5Po/4zKXH897Fh+bcsyDsgC1ce0WcB6NT+bKE7ZpCOL9n/UF+pyLvldRgvrUaDuQkLrCd701OBGcOA5+eJcagRLiMb2WJAwBXASm6qyEhlOucEhJwatzHNOcZi4Au3GFh3F6s/Ob5KmB0vzMFmgsXDtotDSZ4l0cpkwly7lRy5eDm6TOtCZExiNqJWM8nZwqhNTvCMhrAV2ugdKrTdIiY2KaFMcgrm8jrRtCzK+EsDdFulLRgXA1QWGc9JxIddT221C+DqfNNblhaL3YOzTgvL0Fib+JHBG1dg6ILhe8tvu8EsY3eZ3zgkdoTDUjn3v9Z54nARbbUDleYA/+ErmpBx2oXVOiTRnG2eG+1/nxGmMQGHjHh1HDSQXgrIn3KtTI2dm54s5fjtiws4n57Csdj4pHnqGx9qLVv4w0uTmkznQ2JKCxoNLszlQfAwUgt9KK1wBLDwrjas62A2ncGHjmbqkAvDsOh1vseF2L1TfiOPFOcAqX78dYwGkYE+p5U7gFpqEzxPYVHtYF3hyqB3JIcWpEaOJxdYmaDEeQUPrFwAqaYe14p2AHAT0lVQL2Pcgn308mGb7NlUy8zdpzBvK2JTjYDBshQretc5r1tXyYnDaHdQ2XAb1ubPxTEuADEgKeDjdi5KGxbG06W0m4Faucr/xVB2qseH0ZPcRZhny87IfPR86+/RBPqxuzKWZw2p7giPXaD2gWYdpQA7y5O+gy7G0PSklIGXuzssxsW77ExVEGs+FiNE6GyIIT0SDJN71by9dM4QrANXCV081XMObnfIXs7GlrWyNLlrA9rqev8tB0MPzOXt9qBy/LQ+d8Os+td1kNbld6TVgGCevM5I8OIB7TOK9nJcX6qL17npUwcGLUKIJsD3XZwR47vlJg5QVaoVJ4obDy+JYvQ9GzQDMFbQdC5890pQqHBxwdFPaxkDAv/j4HYUb0/ogvRI/eBPE1SoiL42Bn/vgmeMhpaA/a5x789u0ii2DE7XVOOwW5S126+Sfs+M9j3Pz08IN/g3i8r8DtVFLlJ9YFhIxqmzxyKJrxFxlc//I/WXMEdcNslJ2qUs+iI/VwMHAX3Sucl/m19GT1n3XWcU/k6QQt4sF8P54VN6ZhY3z9oJNqfXTw4GiGlhDpylpNl2UpktGbo4TfqdXEr5gM0C7F85jCfylft7J6VjnzTywzCVXmyGoYUEbEwxvZVFniEhLZY8YyUcBwjcig6MbQHXKlfI3NxhyrrTCF2z0vNNiQsrSKv1jHW8xKRDMa2rhEr2tAyGQ9PRk+bSSoPTJQVx8YWcSyxjzTd7998lvv9RGepU0ntUXJhN74bw3BAB8dt0VV+uOYuiKDVfqCXykrUlXY8JuqqrUWSyuN65ysubzFJioV6TmzxrTUEyjpupjlgOh/28dmX/hXxOpBlsA65NMnYMIAc8LsrK/uwXhR4XZVOQuJtjhU+XP9Z997SDiRiCQSCLJKSn3bss6bHVrL5RWwTyBAOOzbosDpgR9Pjvzrpv/xtP6xxGhTHK8sOfH+Zq682eFODSkOKtqK3X3zt0hrWgHaDotgv02d9GjIeo85ydcVOBRlqJrGbHP/pOy5Uoj2bz99kjSgnphqTGDW7OeDzlGPr6wyIbIIx070OcNCv88lhkvq/pMPjNWdL5+ELepLn5Nbn94c8+sRzoy5trfo65QgyVKQFYABlaE9ocFh9El/aLrH/4SytGlB0b5n9SJWAsxza/e1d1jlEOJFe2mfubzz4XDJif7nVnOWcX7ySRG4s8OUzXLj394SgBq8mTUhK/7qyT9pCv3hEAjEN3zcN/qwTdLiWJ8Z1VQm019sDcdsAC4SLmbj9XN7k+v5lzJOwdXkGVnRmc+ZSTZwBRqCFz1J0d2PwDW9d2nt2dSzPV5+4Ky9IVDlpjOGoppAmEsuPEKF6NJ97d6f8a//8b4K2lalHkR8kqjbG7B0aPFNfcgnUvZ9MsqsQDJf0d/KihRZ5ogdbUv4ymBUkQXG3gc7WovQMtD3DV6HrnBFyBkpeYgUY4eRzpf0525mG8Ya1x+xwvC+g83NPftXzsK9U5ZYNTVa7bJ5fpFBtAM+FDDAngWruvCXomeJ9RObR7++S+3u7lqNizKP2ki7Q+5ZhppFaKwFR1jzxJVgfZM8pFvXQleK9J9HItdB4wMDYZ3qo4KiBgSEaI3HAvU3JbiWPtzp2sp0HHScpegKyy5eevHTy61IPGbXz1k3uJx0+LvaQeOYPMA69zTgg6Cgl0+fnmrkMPNWlzCO//mcWwhQw5sbHhGR0pZCUQz+Xr+YfFk9pPzgMJNKX9ln5mUym221bxbIIo8OYqf3+gXlInrBlq8MnI2atqH0pm357K096d0fTZGKObUI1R7JNs/eZG+e1hoWSzADi9uc304lRwbfJQUWaCmVz6B/C9t4tGfsd3e1oKuJaZmCy/otzjzbLm8dPVIEJXPRaPQXCgLUw2f3AbLtVOTpVqce+/plkYJYmMe9YuH7AQHr3Rb3Zv3O+n8u0ZKTjBu+9zMp7uMeabUvPeLdIAoTpb/6fX0SnqxvZ9vi5aSSq66aCnj3iWthvqFwC585d6zh9NLLFKhpssbq0xgvW9bX12/Zf+ezcyVIChq59Pb13dwVyIQaKr56chS98xu2U77qZTnTxXsPWD6TbaG+HPfHmu7Ka47wUv579VNxikpKN3Xl3XTuFQkrqKjkLC0FDH3qU/6oV2trfHjZ10hc0JTWH8A6F1LgRBYJsSiZRX+mcGAZi/RYxGB6QtLg/4tYElNvG9DMKD9LQUMBMuTIQ44h3Bx3z6SxTC2iDiRzKge+FmXST36W2SzNba7WmHqh/wNQSwcILsf2/S4PAABBDwAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfcHl0aG9uLnB5AwBQSwcIAAAAAAIAAAAAAAAAUEsDBBQACAAIACSgw0AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vr9jts2Ev87fYqBDih273ZtUZ92aqdoeykaYNME3b3icMUeQEm0zFimHIn22kEf4O4p7p8ccE/QF9g36ZPckJRs2bvZ+GOzaNIGWVMkhxzO/GaGQ0q9L+fjDGasKHku+hZp2RYwEecJF2nfmsrBacf68slnvZTlKYsKCoO8GFPZt7yWY63GeS3S6vhqME/6lk/tgetE0WlEu91Tj8TBKfVIcOp1BoQOWOIE3a4FMC/5Y5F/T8esnNCYncdDNqZneUylnnMo5eRxu311ddWqubfyIm2nadSal4kFuHJR9q3q4TFOtzboytXkjm2T9t+fn5npT7koJRUxs0BJNeVPPnvUu+Iiya/giidy2Le6LooxZDwdopih7VrQVkQTlHXCYslnrMShjaqWWY4nliajQvU/Mk+QLcWxIOEznrCib9kt0nV9r+N2QrsbhKGHqswLzoSsaEnFs13P1ptxdmWmVU+ao2eBzPMsompG+PlncGzHhhNVEFM4WASB6bJNm+2awjGFZwrf0HhmuGdIPUPjGRoP9TDjJY8y1rcGNCtRg1wMCkRvWS/lImN6PVXDSnpygjKV/A0SIz8LjMpx4Sf2iWfrPyNzQ0DS4CiL6Y4Ma3YhCbZj5xzCzq3Zkc6GdM472HXu0Kdhv410xG+w8+0T/V//3VRn8NAcXWcHjqZ+GMPAe2gRPbsbPgjPXrsOAb3K66EcKtrKVCUblyoOuF3wu8qdCfjo80GI3usD6WIROoBeDsQHz8cq6UCgyhDcEDs8cKEDio64oJ3e7+CPF+rJAvBxMtUaYqwBgow88F0gOlZ4gBECdLzB2OO4SOH74OMgxZ44ago3AC/AmtsBD9eoQk1IkNDFgVhH9g64BFw1mITgBBA4EKpwRTwVxYKOWj3O6kBgQ0DUnBiwMFiZQIVDOuAqgYJKY1xMpnJNS/E4qR9lPlnCgdQYalcB3YTetXj/qJfRiGW4K54rMAFmNFNerxkNciGhxtExbWlBJ0Mel+dMShxVwis6o2dUsvm3SF3WvDVtnIvyZZHLb/JsOhYlQJxn9nLNeUYaz85y1VhxGx1es8NvdASN5/BWvjn2wLRkyD8vypqcJskzRbEKf6jJFyJbfF0wOprkfF2MXlvvpj02jTOecCp+RHtVXJReoN5cdTSuN1ff9eqF5EVyvijRiGH+D1bkuAvbLYcExPNwV7LtQG3DC9Pj+UHLwzBL7DDwfc9XoTemyvuCsOW4oUNI6BPHdwiG2MU7urqGMZst8aFzthQ9LZRvV2KryrPy6zxbNWnhv6ETOS10noReXCiRvhJpxrSB6DbMOOJRlM/PjWW4Zq6LxQRrtllAlGqlA8YGx/eRoCojU2oatbIllQpxqSkiXVTWxpMlCek6mkaXkSk1FZqvWV0lLKklJXbNiZc6rNnWmt9o21cpzFRweVZXJI9HK2EV/ffTccSWFrQ+JbmnKXvtDQvrjVghWFYZNII5zael8c+GraN5v6Ry+JVIfmApht6XVEVoiVMb0tWKExbzMQ407ZXqqEL2b7hU05qwtGC1hJnOTY1ida/dtOobzXqqb4t8/EzMLtBsNpbaa9fy9Mq44BNlnRDhjjFiKwNMeElxw0ma45SvohSx2lhQkVIp8QeOOa8Q5XQ8xtT9+pcCtyaJa0efKNDDp3KYo8FcDPMxLeEMObHBq+u3BSbXCYYqRESnx3kxKoeMyQs2l0CjfIY9P16/zV7B5Pq/kGd8RKG8fiuxE/8UM4a5OqDxsUwhrpfHMjbGDBekNn8xRRoeL+0g0pxQE9NKWeowodWljADy6BWG4tX+aQatMMP+pfnb2vhtbfr4S7PJkOqcu3ICumDFGiB6tud5UnEmNUxoBVqXGJYmZgLAHYEZW5aVF8MEJ9RBoIFgJet7paabUtu/B6nFptTO7WKvBYr7lPrFYFAyCXMUCcPoom+dkrt0Umbq2AZjLvQhYUznasnILSpxw5Z4cMVYIFYHV7PuasMjthJO8XL9jnpCdq5+GPB5w6PREfkbDF/rsWgVsSUmEyM8DJZ6DUsc1MN3PEmYeCeEewE4nxTIS02idQJIZwG2Ynk0P4Y+ppdtTBf/DPN/HjnHtzj4YCp0JFoCOLDuE2B7S7O2DzXrfTBoajLOMfSKBIQ+D5yz11Ombh9W+SnFTO+In8DgiB8fo4SY7HEsHBUdgGKGF8FfgLTsp6eYFlDM8o4iOAV6jPoXlb6msp7orOJfcb2BSsZLudQ4Em8LCe4tCTf6U0lgRRzDr//+Dygq+PVf/4N0Wb2Jo2+A1Gf/yFT3xXIfn9AJm0rD1vJ207raoE/3Q+9lni3SXPz01Az76YycAL88gaP50VqTwvHy+AQW682Xx8fvprVv6avb1xsv12yHGNu5xUKcXSzEOdRCblpCnebuv1X9Vu3gnKUaj/3tYFsM3V0wdB8Sw4/dl7fF0Pjgtnh5u+Dl3VtU/kSAW1dWlOcZo6u8It7MJleS75ps7KudRj5pd3WGV98C3a68mE40aroND1J4bsNpq7ManKvD2kEb0W3GurgtBm1uIrr1ITcjfxfH8A90jPRd6aVje5/sZnSYLWyLY7ALjsFD4vgbjmsfDMfDNqtwFyzDP7C8FUsN2uYpL1KnvKg+5amqfXxD/8nd6i+rqWsFJ+8BYP26/4ER0Degpb78aBHH11ujvg55o3TotwLH3x8q9lqYIaW5MObjScZjLpcazdRR/plQd7xM30XcvBUeMTZR9/EvxEVBRak+blhPIvbBeN0tz5hI5RAfL/HYrvzzTvTZbuizQ9F/kGRxZQZOq+PY7k1T8FrEJv7HZQ53p6XpZlraYLPfJdju/tjMS0Nz8+jfiVMzL/3u+pf0XrLS5zzR8fPGmWr/dKOzyxbVOXCL4nffSmpYPsYt6pAjROd991a70N7/saK7i310H9I+fifHij3sY1tszbvqra+47T+8/+HQ3e2gQXZ7WXHo24pPFckt0tDOKg3tXL4vBR3uloIOD01BPyQuzcyzGzqBTjE3U89O4Dod8gnlnvzec8/doWjmnoFWud/dOvd8ziWaoxhJ883KWg4qbuhi411137og1bvqz19Pc/nFX6cwogKu34qkoPUHMBoE9VwgxwxX+vmfiP1FykQ+1l+xUJEyEAsKM/U9DBNmJdSQ5fEQIv3xy8h4SV5QpGnpTv3zdM7GE5bBY6B9W7fAzX+Reo9um0VqqdZhlWy+crOL94W/BsYf4gX6rd86gMHXMXfetrsJTbv5TZL+RLD6kP/J/wFQSwcIYyOfxIkJAAB4MAAAUEsBAhQAFAAIAAgAJKDDQC7H9v0uDwAAQQ8AABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX3RodW1ibmFpbC5wbmdQSwECFAAUAAgACAAkoMNA1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAByDwAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIACSgw0AAAAAAAgAAAAAAAAASAAAAAAAAAAAAAAAAAM8PAABnZW9nZWJyYV9weXRob24ucHlQSwECFAAUAAgACAAkoMNAYyOfxIkJAAB4MAAADAAAAAAAAAAAAAAAAAAREAAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAAgEAANQZAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />
Övning Riemannsumma i GGb
Uppgift |
---|
laborera själv i Geogebra
Denna GGB ger dig möjlighet att flytta stapeln och att testa olika funktioner. Du kan ändra på antalet staplar och se hur det påverkar beräkningen. Vad lärde du dig av denna övning? |
uppg 2
Testa denna: http://www.geogebratube.org/student/m11330
Hur hanteras negativa areor?
Uppg 3
Man kan skapa Riemannsummor mellan två funktioner:
Mer om integraler
Mekaniken
Jämför med mekaniken, sträckan är arean under en vt-graf.
Problemlösning med integraler
Derivator och primitiva funktioner i en behändig formelsamling:
- Formelsamling på WikiBooks med derivering och integrering.