Algebra Ma3C: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 32: | Rad 32: | ||
'''Ma3C:''' Sedan gör du uppgifterna i boken. | '''Ma3C:''' Sedan gör du uppgifterna i boken. | ||
''Här kan du repetera potensreglerna genom at expandera fönstret nedan:'' | |||
{{transclude|{{:potenser}}}} | {{transclude|{{:potenser}}}} |
Versionen från 4 november 2012 kl. 16.53
Lektion 1 Geometriskt bevis
Uppgift |
---|
Ni ska göra en ppt och förklara de fyra geometriska bevisen. Det kommer att vara CC och ni jobbar gruppvis två och tvås eller tre. Det kommer att publiceras. Ni börjar alla på papper och sedan gör ni ett som vi kommer överens om i presentationen. För att lyckas kan ni behöva läsa sidan 54 i boken eller gå tillbaks till Ma2C länk...
Exempel på förklarande ppt: Multiplikation genom uppdelning av talen Här ska ni jobba alla tillsammans på en presentation i Google Drive. Presentationen är för tillfälet stängd för redigering för att undvika klotter. --Håkan Elderstig 21 oktober 2012 kl. 12.25 (UTC) |
Resultatet ser du här till vänster.
'
'
Repetition -Algebra
Här kan du repetera kvadreringsreglerna genom at expandera fönstret nedan:
Första och andra kvadreringsreglerna
Kvadreringsreglerna är regler i algebran om hur man utvecklar uttrycken
[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math] | (Första kvadreringsregeln) |
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math] | (Andra kvadreringsregeln) |
Texten i ovanstående avsnitt kommer från Wikipedia.se
Förklaring (a-b)2 = (a-b)(a-b) = a2-ab-ba+b2 = ( och ab = ba ) a2-2ab+b2 V.S.B.
Länkar:
Bondestam respektive Wille på Mattecentrum om kvadreringsregeln:
WolframAlpha Widget
Här kan du testa att låta datorn göra parentesmultiplikation:
{{#widget:WolframAlpha|id=c3f53c80c93fa003e2f8f54c64e0e386}}
Här kan du repetera konjugatregeln genom at expandera fönstret nedan:
Konjugatregeln
- Så här ser den ut:
- a2-b2 = (a-b)(a+b)
- [math]\displaystyle{ (a-b)\cdot(a+b) }[/math]
- [math]\displaystyle{ = a^2 +a\cdot b -a\cdot b -b^2 }[/math]
- vi kan stryka ab - ba = ab - ab = 0:
- [math]\displaystyle{ = a^2-b^2 }[/math]
- V.S.B.
Film
Bondestam (tv) respektive Matteboken (th) förklarar:
Geometriskt bevis av konjugatregeln
Första beviset
Andra beviset
Visualisering
Här gäller: [math]\displaystyle{ (x-y)\cdot(x+y) = x^2 - y^2 }[/math] Denna är gjord med Geogebra, sparad som animerad gif, upladdad till WIKIMEDIA COMMONS och länkad hit. [math]\displaystyle{ (a - b)\cdot(a + b) = a^2 - b^2 }[/math]
Uppgifter
Övningar (utan räknare)
1. [math]\displaystyle{ 1992\cdot 2008 = ? }[/math] 2. Lös [math]\displaystyle{ x^2-1=0 }[/math] för alla reella x.
Tips : Använd konjugatregeln och nollregeln för ekvationen.
Webbmatte
Lektion 2 - Repetition potenser
Repetera avsnittet om potenser genom att expandera avsnittet nedan.
Ma3C: Sedan gör du uppgifterna i boken.
Här kan du repetera potensreglerna genom at expandera fönstret nedan:
Lektion 3 - Polynom och faktorer
Här kan ni behöva gåt tillbaks till sid 52 för att repetera. Eller här: Ma1C - Potenser
Lektion 4 Faktorer rötter och nollställen
Ingången till denna lektion är ..
Lektion 5 - Programmeing
Diskreta och kontinuerliga funktioner
cvnG0YWPLjQ