Derivator: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 21: | Rad 21: | ||
: <math> y = yot + /frac {gt2}{2}</math> | : <math> y = yot + /frac {gt2}{2}</math> | ||
'''Fråga 2.''' | '''Fråga 2.''' Derivera funktionen. Derivatan av läget y(t) är nämligen hastigheten vid tiden t. Alltså: <math>y'(t)= </math> hastigheten. | ||
'''Fråga 3.''' Surfa lite och föreslå en modifierad funktion som tar hänsyn till luftmotståndet. | '''Fråga 3.''' Hur högt kan kulan nå? | ||
'''Uppgift 4.''' Rita graferna för <math>y(t)</math> och <math>y'(t </math> i GeoGebra. | |||
'''Fråga 5.''' Surfa lite och föreslå en modifierad funktion som tar hänsyn till luftmotståndet. | |||
}} | }} | ||
Versionen från 4 juli 2012 kl. 21.03
Uppläggget
Du ska få lära dig derivator på ett effektivt sätt:
- Först en frågeställning
- Sedan ser vi hur derivatan hjälper oss lösa problemet
- Därefter lär vi oss derivera
- Slutligen kommer derivatans definition
Alltså inte begreppen först och tillämpningen sen utan frågeställningen som leder till behov av verktyg.
Frågeställning
Uppgift |
---|
Luftgevär används främst för sportskytte, i viss utsträckning även för skyddsjakt på skadedjur som råttor och vissa fågelarter. För att få användas för jakt i Sverige måste kalibern vara minst 5,5 mm och utgångshastigheten minst 180 m/s. Texten i ovanstående avsnitt kommer från Wikipedia.se En jägare vill skjuta mot en fågel som befinner sig 35 meter upp i luften. Fråga 1. Vilken hastighet har kulan då den når den höjden? Tips: Kulans läge kan beskrivas med fuinktionen:
Fråga 2. Derivera funktionen. Derivatan av läget y(t) är nämligen hastigheten vid tiden t. Alltså: [math]\displaystyle{ y'(t)= }[/math] hastigheten. Fråga 3. Hur högt kan kulan nå? Uppgift 4. Rita graferna för [math]\displaystyle{ y(t) }[/math] och [math]\displaystyle{ y'(t }[/math] i GeoGebra. Fråga 5. Surfa lite och föreslå en modifierad funktion som tar hänsyn till luftmotståndet. |
Deriveringsregler
Varför inte börja med de enkla deriveringsreglerna. Det är enkelt och gör att vi snabbt kan göra något nyttigt.
Deriveringsregler:
- Derivatan av funktionen [math]\displaystyle{ f(x) = x\, }[/math] är funktionen [math]\displaystyle{ f^\prime(x) = 1 }[/math].
- Derivatan av funktionen [math]\displaystyle{ f(x) = x^2, }[/math] är funktionen [math]\displaystyle{ f^\prime(x) = 2x }[/math].
- Det kan generaliseras till att funktionen [math]\displaystyle{ f(x) = x^n }[/math] har derivatan [math]\displaystyle{ (f^\prime(x) = n \cdot x^{n-1} }[/math].
- Derivatan av [math]\displaystyle{ e^{kx}\ }[/math] är [math]\displaystyle{ ke^{kx} }[/math].
- Derivatan av [math]\displaystyle{ a^x\, }[/math] är [math]\displaystyle{ a^x \ln(a) }[/math]
- Derivatan av [math]\displaystyle{ \ln(x) \ }[/math] är [math]\displaystyle{ \frac{1}{x}\ }[/math]
Uppgift |
---|
Derivera följande funktioner:
|
Additionsregeln
Derivatan av en summa av två funktioner som båda är deriverbara:
- [math]\displaystyle{ (f + g)^\prime = f^\prime + g^\prime. }[/math]
Produktregeln
Produkten av två deriverbara funktioner är deriverbar, och derivatan ges av följande formel.
- [math]\displaystyle{ (f \cdot g)^\prime = f^\prime \cdot g + g ^\prime \cdot f. }[/math]
Kvotregeln
Derivatan av kvoten [math]\displaystyle{ \frac{f}{g} }[/math] ges av följande funktion:
- [math]\displaystyle{ \frac{f^\prime \cdot g - g^\prime \cdot f}{g^2} }[/math]
Derivata av sammansatt funktion (kedjeregeln)
En sammansatt funktion f(g(x)) är en funktion f(x) som har en annan funktion g(x) som sitt argument, istället för en variabel som x. Detta kan även skrivas [math]\displaystyle{ (f \circ g)(x) }[/math] för att förtydliga att g inte är en variabel utan själv är en funktion av variabeln x. Derivatan av en sammansatt funktion går under namnet kedjeregeln:
- [math]\displaystyle{ (f(g))^\prime = f^\prime(g)\cdot g^\prime. }[/math]
En widget som deriverar
Här är en widget som deriverar åt dig. Pröva den gärna.
|
id=c44e503833b64e9f27197a484f4257c0}} |
Derivatan lika med noll
Fiffigt sätt att hitta extrempunkter:
- derivera funktionen
- sätt derivatan lika med noll
- lösningens x-värde ger max- eller minpunkten
Exempel |
---|
För att finna det största värdet som antages av funktionen definierad av [math]\displaystyle{ f(x) = x^3 - 2 x^2 + x - 3 }[/math] för [math]\displaystyle{ 0\leq x\leq 2 }[/math] beräknar vi derivatan och bestämmer dess nollställen.
Eftersom andraderivatan är
så är
Värdena i randpunkterna är [math]\displaystyle{ f(0) = -3 }[/math] respektive [math]\displaystyle{ f(2) = -1 }[/math]. Följaktligen har funktionen f en lokal maximipunkt för [math]\displaystyle{ x = 1/3 }[/math] och en lokal minimipunkt för [math]\displaystyle{ x = 1 }[/math]. Respektive extremvärden är [math]\displaystyle{ f(1/3) = -77/27 }[/math] och [math]\displaystyle{ f(1) = -3 }[/math]. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt). |
Introduktion till derivatan
Fler filmer:
Lutning och tangent
Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna . Linjen genom de två punkterna har lutningen:
Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent. |
<ggb_applet width="300" height="208" version="4.0" ggbBase64="UEsDBBQACAAIAHm94UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHm94UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVjrb9s2EP/c/hUHfWq32Cb1slw4LZoBxQqk7YB0w7APA2iJttnoNZHyo+gfvztSsuWkMfrCsCQ2SfHe/N0dlfmLXZHDRjZaVeWlx8fMA1mmVabK1aXXmuUo8V48fzxfyWolF42AZdUUwlx6IVGqDCdZ7KdsloxCyfxRGOBXkrLlaCZDIRfSn/ki8QB2Wj0rq7eikLoWqbxJ17IQ11UqjFW8NqZ+Nplst9txr2pcNavJarUY73TmAZpZ6kuvmzxDcSdM28CS+4zxyZ9vrp34kSq1EWUqPSAXWvX88aP5VpVZtYWtysz60gsYGreWarVGn4KIezAhohoDUsvUqI3UyDpYWp9NUXuWTJS0/8jNID+440GmNiqTzaXHxnE0Y4Nf1FE1Spamo+11Tnpp842SWyeWZi7KHpiqyheCJMKnT+Azn8EFDdwNPg5x7LaYe8YCN/huCN0QOZrQsYeONHQ0oaMJAw82SqtFLi+9pcg1RlCVywZP77DWZp9La0/34Og9v0CftPqIxDyaeeBCjgvGLugT4ydkzPk9cJIPtJqm/UqlvcqAJH+pSv+7HA16nT4L7uv0owfcjM8odX5/iZ88GviJquyf/dzTGJxz865Gt/4+hXH4n7g4n/SpMu+yA/SaaDv0GFloypdgBtGMYM8hwtyIp4jyCPgMh6kPmA3AIwgjXPIEYhqnEExxI4QAEiA6HoBNjijBr3BqhcUQoTB6OsWcBI6KQogC4DanQsBMApuXmKN+gBRRBBEykXruk4gghjDGVZBAiDZSSk45EgbIiGtU70PAISBmPgU/hpjk8ZBSPU7IdBTpQ8wg5iQQsxoz2mUz0icQkDdxFy5V1q05CVFaZP3UVPXhLJAa69Gx6rn6dFIUH81zsZA59okbOkmAjcgpI6yiZVUa6A8xds9WjajXKtU30hjk0vBBbMS1MHL3Cql1r9vSplWpf2sq80uVt0WpAdIqZwebq5wP5v7BalwEg41wuBENNuLBfPpZvRXuQKsl6q8a3ZOLLHtNFMfSgJF8V+b7q0aK27pSp27MJ7blzGWb5ipTovwDwUpaKC5w7EDs2IF4wnpDqia72WtEMOz+kk116Y386Xg2/Imxde3dns/90z3MP50Kyr5wdocLmR7YSpxuuTkckdjJo7erhlJ7sHitr6r8+MgG4BdRm7axtwcsiQ259bJc5dKCxKY2tub0dlHtbhw6Aifr/b7GVef9YmUDD1gc/ChCAqqw6NKCSkIHMTLtQMUsDbMUrIebyu5JIe4TKYhfZ1rnKu/d5KxXo7QtaczrEqcvV4R+6vRtqcx1vzAqvT26Sgxv22IhDxg6lcl/lMz55A7I5reyKWXeYRoPs61a7VJ0APdMpqrApdvwO+vouH5HA9zTTK4a2Rue25uZC5jdPYHrvcdW1KumKl6Xm/eIhTsGzCe9lXOdNqomzMEC+8CtPKIqU1pgG8mGfJSE6HpK7QLDYyg0mJ6tWVeNvXxhVcHRUhaFKDMobed51ZaWxzsWQ8HoisbhJ9j9/cR/Cj8DxlhwG2qBpSVynlSt6amXzvROMuV3Lgu8zoGxEF72OvrTXFptdGxQLT5g/Ty02G7/eB64/wCkQeT1WpCpXWhzsZfNSbCtuDdVdnoER4AbLL63eMPU7jbZ5Zud/KqyTNrG67DkHCLXdnWDHBTmztqX+H6ww0bxJLiA5ZPg6dNelM1+1zlOA9JtHPjPR+OYJQ8Fw1aCbw2HBaqGHVYneoHZ0ysP3lA/ulcfd/cne6k4OcZo+PQOwk9CdeJ02RayUenBrbV1Gznbjp+PA8ad6O8JxhAZ/Gwo3i2XWhryHBuJ9XzE/c+GqjcrpxcYKFRp48ywIkIhdmQ6Nh6x0NibDb7IYXUojy9yzv6ut+EtmKJMPEkX7iimyVLt5OHigUmrPmKREicefxa4/jngUr3BcmaLAjbO2sUE8M4iXa09sNYYI9uiBqXoHOivDqDH+rC2wKfJV4P/6v8C/tCij87DHyfhLIlp9QOS4LTcXuMR3im1L11xvbpXVcX5qkpoOIRJfFtFtc3/R9TUYxxHbDzrw7fvkpoNfnwbVTYOptM4YX5/0ZpGZzAence4/Kd0LNpdCVRR5ypV5u5RTIZN0l5Gu/+rPP8XUEsHCGX5/xc8BgAA9BEAAFBLAQIUABQACAAIAHm94UDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAeb3hQGX5/xc8BgAA9BEAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADTBgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Derivatan är lutningen i en punkt
Om du ska räkna ut lutningen i en punkt får du problem. [math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{0}{0} }[/math] och det går ju inte. Här behövs formell matematik.
Nu utgår vi från en punkt [math]\displaystyle{ (x,f(x)) }[/math] och så kallar vid punktensom närmar sig för [math]\displaystyle{ (x+h,f(x+h)) }[/math]. När [math]\displaystyle{ h }[/math] krymper kommer den andra punkten att närma sig den första. Man säger att h går mot noll och det skrivs
- [math]\displaystyle{ \lim_{h \to 0} }[/math]
Detta kan sammanfattas på matematisk form och kallas derivata.
Definition |
---|
Derivatan av funktionen [math]\displaystyle{ f }[/math] i punkten [math]\displaystyle{ x_0 }[/math] definieras som gränsvärdet
|
Geometrisk tolkning
Om en funktion f åskådliggörs av en graf y = f(x) så anger derivatan av f grafens lutning (förändring av y per förändring av x) för varje värde x. Derivatan i en punkt är således lika med riktningskoefficienten för kurvans tangent i den valda punkten (x, f(x)).
Tillämpningar
Derivator kommer till användning på många områden inom naturvetenskap, ekonomi, mm. Här kommer ett exempel från fysiken.
Exempel |
---|
Tryck
Antag att p(h) betyder lufttrycket (i pascal) vid höjden h (i meter) över havsnivån. Då kommer derivatan p′(h) att ange hur mycket trycket ökar per meter i höjdled. Derivatan får alltså den fysikaliska enheten pascal per meter. Eftersom trycket i själva verket avtar med höjden, kommer alltså derivatan att bli negativ. |
Derivataquiz