Derivator: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 42: Rad 42:
Följaktligen har funktionen ''f'' en lokal maximipunkt för <math>x = 1/3</math> och en lokal minimipunkt för <math>x = 1</math>. Respektive extremvärden är <math>f(1/3) = -77/27</math> och <math>f(1) = -3</math>. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt).}}
Följaktligen har funktionen ''f'' en lokal maximipunkt för <math>x = 1/3</math> och en lokal minimipunkt för <math>x = 1</math>. Respektive extremvärden är <math>f(1/3) = -77/27</math> och <math>f(1) = -3</math>. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt).}}


=== Definition ===
{{defruta|
 
Derivatan av funktionen <math>f</math> i punkten <math>x_0</math>'' definieras som gränsvärdet
Derivatan av funktionen <math>f</math> i punkten <math>x_0</math>'' definieras som gränsvärdet
: <math>f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}</math>
: <math>f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}</math>
}}


=== Exempel 1 - tryck ===
=== Exempel 1 - tryck ===

Versionen från 1 juli 2012 kl. 23.59

Derivatan

Introduktion till derivatan

Introduktion till derivatan

Fler filmer:

Lutning och tangent

Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna . Linjen genom de två punkterna har lutningen:
[math]\displaystyle{ k = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.

<ggb_applet width="300" height="208" version="4.0" ggbBase64="UEsDBBQACAAIAHm94UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAHm94UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVjrb9s2EP/c/hUHfWq32Cb1slw4LZoBxQqk7YB0w7APA2iJttnoNZHyo+gfvztSsuWkMfrCsCQ2SfHe/N0dlfmLXZHDRjZaVeWlx8fMA1mmVabK1aXXmuUo8V48fzxfyWolF42AZdUUwlx6IVGqDCdZ7KdsloxCyfxRGOBXkrLlaCZDIRfSn/ki8QB2Wj0rq7eikLoWqbxJ17IQ11UqjFW8NqZ+Nplst9txr2pcNavJarUY73TmAZpZ6kuvmzxDcSdM28CS+4zxyZ9vrp34kSq1EWUqPSAXWvX88aP5VpVZtYWtysz60gsYGreWarVGn4KIezAhohoDUsvUqI3UyDpYWp9NUXuWTJS0/8jNID+440GmNiqTzaXHxnE0Y4Nf1FE1Spamo+11Tnpp842SWyeWZi7KHpiqyheCJMKnT+Azn8EFDdwNPg5x7LaYe8YCN/huCN0QOZrQsYeONHQ0oaMJAw82SqtFLi+9pcg1RlCVywZP77DWZp9La0/34Og9v0CftPqIxDyaeeBCjgvGLugT4ydkzPk9cJIPtJqm/UqlvcqAJH+pSv+7HA16nT4L7uv0owfcjM8odX5/iZ88GviJquyf/dzTGJxz865Gt/4+hXH4n7g4n/SpMu+yA/SaaDv0GFloypdgBtGMYM8hwtyIp4jyCPgMh6kPmA3AIwgjXPIEYhqnEExxI4QAEiA6HoBNjijBr3BqhcUQoTB6OsWcBI6KQogC4DanQsBMApuXmKN+gBRRBBEykXruk4gghjDGVZBAiDZSSk45EgbIiGtU70PAISBmPgU/hpjk8ZBSPU7IdBTpQ8wg5iQQsxoz2mUz0icQkDdxFy5V1q05CVFaZP3UVPXhLJAa69Gx6rn6dFIUH81zsZA59okbOkmAjcgpI6yiZVUa6A8xds9WjajXKtU30hjk0vBBbMS1MHL3Cql1r9vSplWpf2sq80uVt0WpAdIqZwebq5wP5v7BalwEg41wuBENNuLBfPpZvRXuQKsl6q8a3ZOLLHtNFMfSgJF8V+b7q0aK27pSp27MJ7blzGWb5ipTovwDwUpaKC5w7EDs2IF4wnpDqia72WtEMOz+kk116Y386Xg2/Imxde3dns/90z3MP50Kyr5wdocLmR7YSpxuuTkckdjJo7erhlJ7sHitr6r8+MgG4BdRm7axtwcsiQ259bJc5dKCxKY2tub0dlHtbhw6Aifr/b7GVef9YmUDD1gc/ChCAqqw6NKCSkIHMTLtQMUsDbMUrIebyu5JIe4TKYhfZ1rnKu/d5KxXo7QtaczrEqcvV4R+6vRtqcx1vzAqvT26Sgxv22IhDxg6lcl/lMz55A7I5reyKWXeYRoPs61a7VJ0APdMpqrApdvwO+vouH5HA9zTTK4a2Rue25uZC5jdPYHrvcdW1KumKl6Xm/eIhTsGzCe9lXOdNqomzMEC+8CtPKIqU1pgG8mGfJSE6HpK7QLDYyg0mJ6tWVeNvXxhVcHRUhaFKDMobed51ZaWxzsWQ8HoisbhJ9j9/cR/Cj8DxlhwG2qBpSVynlSt6amXzvROMuV3Lgu8zoGxEF72OvrTXFptdGxQLT5g/Ty02G7/eB64/wCkQeT1WpCpXWhzsZfNSbCtuDdVdnoER4AbLL63eMPU7jbZ5Zud/KqyTNrG67DkHCLXdnWDHBTmztqX+H6ww0bxJLiA5ZPg6dNelM1+1zlOA9JtHPjPR+OYJQ8Fw1aCbw2HBaqGHVYneoHZ0ysP3lA/ulcfd/cne6k4OcZo+PQOwk9CdeJ02RayUenBrbV1Gznbjp+PA8ad6O8JxhAZ/Gwo3i2XWhryHBuJ9XzE/c+GqjcrpxcYKFRp48ywIkIhdmQ6Nh6x0NibDb7IYXUojy9yzv6ut+EtmKJMPEkX7iimyVLt5OHigUmrPmKREicefxa4/jngUr3BcmaLAjbO2sUE8M4iXa09sNYYI9uiBqXoHOivDqDH+rC2wKfJV4P/6v8C/tCij87DHyfhLIlp9QOS4LTcXuMR3im1L11xvbpXVcX5qkpoOIRJfFtFtc3/R9TUYxxHbDzrw7fvkpoNfnwbVTYOptM4YX5/0ZpGZzAence4/Kd0LNpdCVRR5ypV5u5RTIZN0l5Gu/+rPP8XUEsHCGX5/xc8BgAA9BEAAFBLAQIUABQACAAIAHm94UDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAeb3hQGX5/xc8BgAA9BEAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAADTBgAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Deriveringsregler

Derivatan av en funktion...

Exempel
För att finna det största värdet som antages av funktionen definierad av [math]\displaystyle{ f(x) = x^3 - 2 x^2 + x - 3 }[/math] för [math]\displaystyle{ 0\leq x\leq 2 }[/math] beräknar vi derivatan och bestämmer dess nollställen.
[math]\displaystyle{ f'(x) = 3 x^2 - 4 x + 1 = 0 \Leftrightarrow x \in \{1/3, 1\} }[/math]

Eftersom andraderivatan är

[math]\displaystyle{ f''(x) = 6 x - 4\, }[/math]

så är

[math]\displaystyle{ f''(1/3) = -2 \lt 0\, }[/math] och [math]\displaystyle{ f''(1) = 2 \gt 0\, }[/math].

Värdena i randpunkterna är [math]\displaystyle{ f(0) = -3 }[/math] respektive [math]\displaystyle{ f(2) = -1 }[/math].

Följaktligen har funktionen f en lokal maximipunkt för [math]\displaystyle{ x = 1/3 }[/math] och en lokal minimipunkt för [math]\displaystyle{ x = 1 }[/math]. Respektive extremvärden är [math]\displaystyle{ f(1/3) = -77/27 }[/math] och [math]\displaystyle{ f(1) = -3 }[/math]. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt).


Definition

Derivatan av funktionen [math]\displaystyle{ f }[/math] i punkten [math]\displaystyle{ x_0 }[/math] definieras som gränsvärdet

[math]\displaystyle{ f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} }[/math]


Exempel 1 - tryck

Antag att p(h) betyder lufttrycket (i pascal) vid höjden h (i meter) över havsnivån. Då kommer derivatan p′(h) att ange hur mycket trycket ökar per meter i höjdled. Derivatan får alltså den fysikaliska enheten pascal per meter. Eftersom trycket i själva verket avtar med höjden, kommer alltså derivatan att bli negativ.

Geometrisk tolkning

Derivatan är tangentens lutning i (x, f(x))

Om en funktion f åskådliggörs av en graf y = f(x) så anger derivatan av f grafens lutning (förändring av y per förändring av x) för varje värde x. Derivatan i en punkt är således lika med riktningskoefficienten för kurvans tangent i den valda punkten (x, f(x)).

Khan-övningar

Derivataquiz

1 Derivatan av 2x3 är:

x2
3x2
6x2
x3/3

2 Derivatan beskriver hur något förändras.

Sannt.
Falskt.

3 Derivatan anger hur krokig en kurva är.

Sannt.
Falskt.

4  

Den svarta kurvan illustrerar en godtyckligt vald funktion.
Vad kallas den röda linjen?

5 Förändringen mellan två punkter ges av att [math]\displaystyle{ {\Delta y = 200} }[/math] och [math]\displaystyle{ {\Delta x = 3} }[/math]. Vad blir lutningen?


Widget

{{#widget:WolframAlpha|id=3863698288630ffc1878729993ad7b6d}}