Derivator: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 15: Rad 15:
: <math>k = \frac{f(x) - f(3)}{x-3}</math>
: <math>k = \frac{f(x) - f(3)}{x-3}</math>


Låt sedan <math>x</math> minska så att <math>x</math> närmar sig 3. Då kommer linjen att tangera kurvan i punkten <math>(x,f(x))</math>.
Låt sedan <math>x</math> minska så att <math>x</math> närmar sig 3. Då kommer linjen att tangera kurvan i punkten <math>(x,f(x))</math>. Den linjen kallas för tangent.


=== Deriveringsregler ===
=== Deriveringsregler ===

Versionen från 1 juli 2012 kl. 21.22

Derivatan

Introduktion till derivatan

Introduktion till derivatan

Fler filmer:

Lutning och tangent

Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna . Linjen genom de två punkterna har lutningen:

[math]\displaystyle{ k = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.

Deriveringsregler

Derivatan av en funktion...

Exempel
För att finna det största värdet som antages av funktionen definierad av [math]\displaystyle{ f(x) = x^3 - 2 x^2 + x - 3 }[/math] för [math]\displaystyle{ 0\leq x\leq 2 }[/math] beräknar vi derivatan och bestämmer dess nollställen.
[math]\displaystyle{ f'(x) = 3 x^2 - 4 x + 1 = 0 \Leftrightarrow x \in \{1/3, 1\} }[/math]

Eftersom andraderivatan är

[math]\displaystyle{ f''(x) = 6 x - 4\, }[/math]

så är

[math]\displaystyle{ f''(1/3) = -2 \lt 0\, }[/math] och [math]\displaystyle{ f''(1) = 2 \gt 0\, }[/math].

Värdena i randpunkterna är [math]\displaystyle{ f(0) = -3 }[/math] respektive [math]\displaystyle{ f(2) = -1 }[/math].

Följaktligen har funktionen f en lokal maximipunkt för [math]\displaystyle{ x = 1/3 }[/math] och en lokal minimipunkt för [math]\displaystyle{ x = 1 }[/math]. Respektive extremvärden är [math]\displaystyle{ f(1/3) = -77/27 }[/math] och [math]\displaystyle{ f(1) = -3 }[/math]. Det minsta respektive största värde som antas i intervallet är alltså -3 (ändpunkt och lokal minimipunkt) och -1 (ändpunkt).


Definition

Derivatan av funktionen [math]\displaystyle{ f }[/math] i punkten [math]\displaystyle{ x_0 }[/math] definieras som gränsvärdet

[math]\displaystyle{ f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} }[/math]

Exempel 1 - tryck

Antag att p(h) betyder lufttrycket (i pascal) vid höjden h (i meter) över havsnivån. Då kommer derivatan p′(h) att ange hur mycket trycket ökar per meter i höjdled. Derivatan får alltså den fysikaliska enheten pascal per meter. Eftersom trycket i själva verket avtar med höjden, kommer alltså derivatan att bli negativ.

Geometrisk tolkning

Derivatan är tangentens lutning i (x, f(x))

Om en funktion f åskådliggörs av en graf y = f(x) så anger derivatan av f grafens lutning (förändring av y per förändring av x) för varje värde x. Derivatan i en punkt är således lika med riktningskoefficienten för kurvans tangent i den valda punkten (x, f(x)).

Khan-övningar

Derivataquiz

1 Derivatan av 2x3 är:

x2
3x2
6x2
x3/3

2 Derivatan beskriver hur något förändras.

Sannt.
Falskt.

3 Derivatan anger hur krokig en kurva är.

Sannt.
Falskt.

4  

Den svarta kurvan illustrerar en godtyckligt vald funktion.
Vad kallas den röda linjen?

5 Förändringen mellan två punkter ges av att [math]\displaystyle{ {\Delta y = 200} }[/math] och [math]\displaystyle{ {\Delta x = 3} }[/math]. Vad blir lutningen?


Widget

{{#widget:WolframAlpha|id=3863698288630ffc1878729993ad7b6d}}